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Abstract
In this paper, we present an approach for identification of actions within depth action videos.
First, we process the video to get motion history images (MHIs) and static history images
(SHIs) corresponding to an action video based on the use of 3D Motion Trail Model
(3DMTM). We then characterize the action video by extracting the Gradient Local Auto-
Correlations (GLAC) features from the SHIs and the MHIs. The two sets of features i.e.,
GLAC features from MHIs and GLAC features from SHIs are concatenated to obtain a
representation vector for action. Finally, we perform the classification on all the action samples
by using the l2-regularized Collaborative Representation Classifier (l2-CRC) to recognize
different human actions in an effective way. We perform evaluation of the proposed method on
three action datasets, MSR-Action3D, DHA and UTD-MHAD. Through experimental results,
we observe that the proposed method performs superior to other approaches.
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1 Introduction

Research in human action recognition (HAR) is considered as one of the most interesting
domains of computer vision. The action recognition system is being extensively applied in
human security system, medical science, social awareness, and entertainment [8, 11, 13, 44].
Indeed, to develop an applicable action recognition system, researchers still need to win
against the odds due to diversity in human body sizes, appearances, postures, motions,
clothing, camera motions, viewing angles, and illumination. Besides, difficulty level of the
action recognition task increases by the intra-class variations and inter-class similarities
amongst actions. In the early stage, the human action recognition system was developed by
researchers based on RGB data [4, 40, 51, 53]. But, the RGB data based recognition methods
are less effective to address the aforementioned challenges [8, 17]. In addition, the RGB action
video sequences can merely encode the 2D action data tempted with the lateral movement of
the scene parallel to the 2D plane. In this situation, one requires to handle the deficiency of 3D
information in traditional images. Besides, a significant number of hardware resources are
required to deploy the action recognition system as a result of computationally rigorous image
processing and computer vision algorithms. Consequently, recognition of actions accurately is
considered as a challenging task.

Nevertheless, with the introduction of the depth data sensors, significant progress on action
identification process has been observed during the last several years. The outcomes of a depth
sensor are called depth maps. Depth maps capture distance between object’s surface and the
sensor’s viewpoint [43]. The depth map pixels are actually standardized depths in the visual
scene. Here, it is noted that depth maps are unaffected in lighting situations as well as texture
changes compared to RGB images [67]. Depth images provide body, shape, structure infor-
mation and 3Dmotions of the subjects in the scene. Moreover, the issues of human localization
and segmentation are simple while processing depth images rather than the RGB images [58].
Examples of depth sequences for forward punch, hammer (the hammer action refers to the
sport of throwing the hammer) and side kick actions are illustrated in Fig. 1. Besides, the
information of human skeleton is obtained by depth maps, which provide additional informa-
tion in action labeling [42]. Roughly speaking, depth video data has some notable aspects
making it more a preferred choice over the RGB data, such as action recognition regarding
inferior lighting environments and even in darkness, approximating standardized depth in a
scene, being stable to color and texture changes, and solving the silhouette issue in body
posture [67]. These sensors also eliminate various difficulties in computer vision research, e.g.,
image backward scene removal and object segmentation.

Fig. 1 Example action sequences for forward punch, hammer and side kick actions
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By the above discussion, we are motivated to propose the depth data based action
recognition system in this paper. Therefore, the motion and static information of an action is
collected in three motion history images (MHIs) and in three static history images (SHIs)
corresponding to a depth action video. The above motion and static images are calculated by
employing the 3D Motion Trail Model (3DMTM) on each depth map sequence. The 3DMTM
basically constructs the MHIs and SHIs by taking the front, side and top projections of each
depth map and accumulating consecutive differences of these projections along a specific
view. The obtained static and motion posture images are passed to the GLAC [30] descriptor to
encode the texture information for describing an action. The GLAC on the MHIs and SHIs
generates six feature vectors and those vectors are fused with an optimistic strategy to get the
final action representation vector. The gained action vector is fed to the l2-regularized
Collaborative Representation Classifier (l2-CRC) to label a query action sample. The proposed
method is graphically illustrated in Fig. 2.

The main contributions of this paper are summarized as follows:

1. The 3DMTM algorithm is employed on each depth map sequence to compute the MHIs
and SHIs.

2. The obtained MHIs and SHIs are fed into the GLAC descriptor and the output feature
vectors are combined into a single action representation vector.

3. The action feature vector is passed to the l2-CRC to classify the action sample.
4. The proposed system is comprehensively assessed based on MSRAction3D [33], DHA

[35], and UTD-MHAD [9] action datasets. We make comparison of the recognition
outcome with hand-crafted feature based methods as well as deep learning methods.
Overall experimental assessment indicates that the proposed approach achieves superiority
over the aforementioned approaches (i.e., hand-crafted feature based methods and deep
learning methods)

The rest of the paper is organized as follows. We consider the literature review in Section 2.
The proposed system is discussed in Section 3 extensively. Section 4 presents the experimental
evaluation of the method. Finally, we draw conclusion and outline future work in Section 5.

Fig. 2 Framework of the proposed action recognition system
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2 Related work

Researchers in computer vision have been greatly fascinated by the diversity in feature
extraction and representation strategy in depth data based action recognition system. Thus,
depth action sequences have been described through multiple action features encoding tech-
niques such as 3D point cloud [33], projected depth images [60], spatio-temporal interest
points [55], and skeleton joints [2]. In [33], three-dimensional interest points are gathered from
all the depth maps of a depth action video to illustrate human action. The space-time
occupancy patterns (STOP) are proposed by [46, 47] to represent human actions simply.
Besides, Wang et al. introduced the random occupancy patterns (ROP) features in [48].

In [55], the space-time significant points (STIPs) in depth action sequences are captured
after filtering noise. Similarly, the depth cuboid similarity feature (DCSF) was applied to
designate the local 3D depth cuboid in action recognition [55]. After being motivated with the
motion energy images (MEI) [2] of motion history images (MHI), 2D projections (three
projections) of each depth image were taken in 3D Euclidean space. Then the subtraction
operations between consecutive projections were carried out to construct depth motion maps
(DMMs) [60]. Another process, which is known as the histogram of oriented gradients (HOG)
features [20] was then exploited from the DMMs as global representations of a depth action
sequence. As a result, depth motion maps effectively transformed the problem as 3D to 2D
mapping. Also, the strategy of gaining DMMs [14] was altered to bring the computational
simplicity in the action recognition system so as to implement it in real-time situation. In [10],
the local binary pattern (LBP) [38] algorithm was employed on the multiple overlapping
chunks produced on DMMs to improve the classification power of the recognition system.
Furthermore, HOG features in contourlet sub-bands (generated from DMMs) were extracted
by [23]. In [3, 24], DMMs-based texture and edge features were fused to increase the
discriminatory power of obtained features. The 2D and 3D auto-correlation features were also
captured from DMMs and were fused to distinguish depth actions [7, 18]. To enhance the
DMMs, multi-temporal DMMs were computed and texture features were extracted by Chen
and others in [15]. Also, 3D histograms of texture (3DHoTs) were used to capture dominant
features from a depth action sequence for human action recognition [65]. The frontal, side, and
top planes’ projections in Cartesian plane were derived by 3DHoTs. Another classifier was
proposed, which is referred to as multi-class boosting classifier (MBC), to robustly capture
various types of action characteristics in an integrated action classification system. To capture
the pixel-level shape motion cues about the complex joints, another descriptor was introduced
by using a histogram of oriented 4D normal in [39]. This actually captured the distribution of
the surface normal orientation in the 4D space of time, depth, and spatial coordinates. In [36], a
novel system was proposed by merging salient depth maps (SDM) and binary shape map
(BSM) feature vectors. For introducing a new method, locality-constrained linear coding
(LLC) based action recognition algorithm was proposed in [29]. The method captured
information of human actions in spatio-temporal subsequences of videos. The main experi-
ment of that paper was completed with an ℓ2−regularization classifier as well as a linear SVM.
In addition, an action categorization pipeline by using hierarchical 3D Kernel Descriptors from
depth image sequences was described in [61]. In the approach, match kernel (EMK) was
employed for classification for the next level of hierarchical structure.

Skeleton joints are gained from depth maps to represent a human body compactly. Based on
those joints, several action classification methods have been developed by learning the
correlation among action classes and 3D body-part joints from action depth maps. For
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example, the pairwise differences of 3D joint positions of a subject in a depth frame and the
temporal differences about every depth map were calculated to illustrate human actions [57].
The classification results of the method in [57] were not promising since the extracted 3D
skeletal joints were not capable to encode all of the dominant characteristics of an action. In
that year, the above method was further improved by using histogram-based features [49].
These extracted features were taken around every joint in each depth map. Another framework
for recognizing actions based on histograms of 3D joint locations (HOJ3D) was applied in
[56]. This approach essentially encoded spatial occupancy information with respect to the
skeleton root. Moreover, a genetic-based evolutionary algorithm was used to determine the
optimum subgroup of skeleton joints [5]. It was also treated the topological construction of the
skeleton to enhance the action classification outcomes. In fact, a binary vector was taken into
account, where individual gene defined the attention or no attention of a specific action
attribute. The filter and wrapper models were employed for its deployment. However, the
computational complexity and the prompt convergence resulted in shortcomings of the
method. Besides, the fitness measurement of a significant number of recognition outcomes
was needed to attain the ultimate result through the wrapper-based evolutionary method.
Actually, the association of the computation of a particular fitness through a learning and
classification procedure took huge time for the entire evolution. Additionally, when the
evolutionary results were collected in a local minimum and an expected outcome was not
gained, then the early convergence occurred. A non-parametric moving pose (MP) approach
for low-latency action identification was reported in [62]. For evaluating the method, a KNN
algorithm was employed, which considered the temporal position of a specific frame inside the
action sequence. A Fisher kernel (FK) exemplification was utilized to represent the skeletal
quads as well as a Gaussian mixture model was learnt from learning data to encode the relative
position of the joint quadruples of human skeleton, in [22]. Another joint representation and
recognition model process by combining with multi-perspective and multi-modality catego-
rized for 3D action recognition was described by [26]. In the work, the authors constructed a
difference between motion historic images, then proposed multi-perspective projections for
depth and color image sequence. The noise-robust actionlet ensemble model was presented in
[50] to improve the action classification. The system considered the interaction between the
subsets of human body joints. Another skeletal representation based on three-dimensional
geometric linking among different body segments was proposed in [45].

For looking variations in skeleton joints related systems, 3D joint features were
combined with spatio-temporal features [37]. The spatio-temporal features were cap-
tured on the color action video employing the center-symmetric motion local ternary
pattern. Sometimes, the skeleton joint features are also incorporated into the depth
image relevant features. As an example, Rahmani et al., incorporated the joint
displacement histograms, joint movement occupancy volumes with the 4D depth,
depth gradient histograms in [41].

In [8], the recognition was also improved by a blending pipeline with two different
data sensors consisted of a depth sensor (a Kinect sensor) and a wearable inertial
sensor (accelerometer). Individual attributes are captured from the action data obtained
by the two sensors. The features of two different data corresponding to same action
are fused from two different perspectives, i.e., feature based fusion and decision based
fusion. In the method, the enhanced recognition accuracies were gained by utilizing
action features from data of these two different modality devices mutually in com-
parison to the conditions when every device was utilized independently.

Multimedia Tools and Applications



Besides the handcraft features based methods discussed above, all the deep learning
models learn the action characterization from raw action data and properly compute
the extreme level semantic action representation. In [52], Wang et al. introduced a
deep model, where merely small-scale CNNs were required but exhibited superior
performance with low computational complexity. In another method, DMM-Pyramid
architecture was introduced for preprocessing the depth action videos [59]. In fact, the
architecture is capable to preserve a part of temporal ordinal information from the
depth sequence. In the system, the convolution operation was advocated to exploit
spatial and temporal characteristics from raw action data spontaneously, and DMM to
DMM-Pyramid was extended. Afterward, the raw depth action sequences were passed
to convolutional neural networks with 2D and 3D architectures. In [32], by employing
a video domain translation-scale invariantimage mapping technique, 3D skeleton
videos are mapped into skeleton color images and a multi-scale dilated convolutional
neural network (CNN) adopts those images as inputs to classify them into distinct
action categories. Multiple data augmentation approaches are considered to increase
the generalization and robustness of this system. Lei et al. [31] characterized human
actions through Spatio-Temporal Interest Points (STIP) features by following two-
stage action modelling strategy. In the first stage, super-pixel Gaussian Mixture Model
(GMM) is established to remove noise from the extracted STIP local features and
individual class based codebook is constructed to obtain the basis for further inter-
class feature collection. The spatio-temporal pyramid model (STPM) is then developed
to describe spatial temporal correlation between those features. It should be noted the
STPM yields a high dimensional features space. In the second stage, the combination
of the Linear Discriminant Analysis (LDA) and the k-means clustering algorithm is
employed in the STPM features space to gain high-level codebook and its corre-
sponding feature representation.

Zhang et al. [66] introduced susceptibility weighted imaging to scan the subjects to detect
the Cerebral Micro Bleed (CMB) voxels within brain. Then, to solve the accuracy paradox
caused from the imbalanced data between CMB voxels and non-CMB voxels they used under
sampling. As well as, they developed a seven-layer deep neural network (DNN). By combin-
ing both parametric rectified linear unit (PReLU) and dropout techniques. Zhang et al. [64]
proposed an improved 10-layer convolutional neural network including 7 convolution layer
and 3 fully connected layers. They collected 681 healthy control brain slices and 676 multiple
sclerosis brain slices to complete their experiment.

In [21], Elmadany and others proposed a skeleton feature descriptor named Bag of
Angles (BoA) and a depth feature descriptor for depth videos called Hierarchical
Pyramid DMM Deep Convolutional Neural Network (HP-DMM-CNN). To enhance
human actions Zeng et al. [63] proposed another process via structural average curves
analysis from action samples.

The above discussion motivates this work on depth data oriented recognition system due to
its superiority over other data based methods. Our work mainly focuses on the strategies of
discriminative feature extraction and action representation with the extracted set of features. In
feature extraction, this paper emphasizes on the motion as well as static image based feature
extraction whereas previous methods extracted features from the motion images only. Overall,
regarding the proposed system, our main hypothesis is that the inter-class similarity and the
intra-class variation issues are considerably addressed when we encode the action features
from the MHIs and SHIs and access them jointly to represent an action instead of using alone.
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3 Proposed recognition system

In this section, we present our approach by a comprehensive discussion on feature extraction,
action representation and classification techniques. Algorithm 1 describes our recognition
system concisely. To elaborate the proposed method, the corresponding flowchart is shown
in Fig. 3.

3.1 Features extraction

Our method extracts action features by employing the GLAC [30] on the MHIs and
SHIs for each depth action video. Actually, the MHIs gather the motion information
whereas the SHIs capture the motionless pose cues, monotonous movements and
monotonous unmoving cues successfully [34]. It is clear that the MHIs and the SHIs
store the complementary information of an action. However, the MHIs and SHIs are
computed by passing an action video to the three-dimensional Motion Trail Model
(3DMTM) [34]. In this work, about each action video, the 3DMTM outputs the three
MHIs as {MHIXOY,MHIYOZ,MHIXOZ} and the three SHIs as {SHIXOY, SHIYOZ, SHIXOZ}
corresponding to three two-dimensional Euclidean faces. Figure 4 shows example of
SHIs and MHIs computation corresponding to the horizontal wave action. The
3DMTM uses the motion update function φM(x, y, t) and static posture update function
φS(x, y, t) to state the motion and motionless situations of an actor. Those functions
are defined as:

φM x; y; tð Þ ¼ 1 if Pt > ζM
0 otherwise

�

φS x; y; tð Þ ¼ 1 if dt−Pt > ζS
0 otherwise

� ð1Þ

where (x, y) is the position vector of a pixel at a time t. The dt ¼ dif gTi¼1denotes the sequence

of depth images whereas Pt ¼ P j
� �T

j¼1 indicates a sequence of differences between two

successive depth frames. Also, the φM(x, y, t) and φS(x, y, t) require ζMand ζS threshold values
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to become concern about the motion and motionless portions within consecutive frames. So,
the MHI FM(x, y, t) can be calculated using φM(x, y, t) as

FM x; y; tð Þ ¼ T if φM x; y; tð Þ ¼ 1
FM x; y; t−1ð Þ−1 otherwise

�
ð2Þ

Following similar fashion, the SHI FS(x, y, t) is gained through φS(x, y, t) by

FS x; y; tð Þ ¼ T if φS x; y; tð Þ ¼ 1
FS x; y; t−1ð Þ−1 otherwise

�
ð3Þ

It is worth to mention that the average motion history image (AMHI) and average static
posture history image (ASHI) can also be generated by the 3DMTM but the AMHI and the
ASHI decrease the recognition outcome [19]. As a result, we exclude them in our work.
However, for intuitively stating the GLAC implementation on the MHI/SHI, let I(x, y) stands

for the MHI/SHI. At each pixel of I(x, y), the gradient vector ∂I
∂x ;

∂I
∂y

� �
can be obtained by using

the image gradient operators such as Roberts, Sobel, Kirsh, and one-dimensional derivatives

([−1, 0, 1]). The magnitude of gradient vector is expressed by m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂I
∂x
2 þ ∂I

∂y
2

� �r
and the

Fig. 3 Flowchart of the proposed method
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orientation angle could be formulated as θ ¼ arctan ∂I
∂x ;

∂I
∂y

� �
. The angle θ is coded by D

orientation bins with the voting weights to the neighboring bins to form a D-dimensional
gradient orientation (G-O) vector g. The vector is basically in sparse form. By g and m, the Kth

order auto-correlation gradient function could be written as:

F d0;…dK ; a1…aKð Þ

¼ ∫w
h
m r þ b1ð Þ;…;m r þ bKð Þð �gdo rð Þgd1 r þ b1ð Þ…gdK r þ bKð Þdr ð4Þ

where b1, b2,… , bK are called as shifting vectors with respect to the location vector r = (x, y) of
a pixel in I, gd means the dth member of g and w(.) is a weighting function. Our experimen-
tations employ K ∈ {0, 1}, a1x, y ∈ {±Δr, 0} and w(.) ≡min(.) in Section 4 by [14].

In Kϵ{0, 1}, the GLAC features are written as follows:

0th order GLAC : F0 ¼ ∑r∈Im rð Þgd0 rð Þ ð5Þ

1th order GLAC:F1 ¼ ∑r∈Imin m rð Þ;m r þ b1ð Þð �gd0 rð Þgd1 r þ b1ð Þ� 	 ð6Þ
Based on Eq. (5) and Eq. (6), the spatial auto-correlations, amongst local gradients over the
gradient magnitude image (i.e., image of m) are calculated by using mask patterns as shown in
Fig. 5. There is a single mask pattern for Eq. (5) and four independent patterns for Eq. (6)

Fig. 4 Example of SHIs and MHIs generation using the 3DMTM corresponding to the horizontal wave action
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while avoiding the duplicate patterns. For the 0th order GLAC in Eq. (5), summation is taken
to only two non-zero elements of g with weight m about a pixel at r. For the 1st order GLAC,
summation of products in Equation (6) is considered to non-zero elements of g(r) and g(r + b1)
with weight of min [m(r),m(r + b1)] for each upper mask pattern in Fig. 5. However, the above
GLAC feature dimension (concering F0 and F1) is configured by d =D + 4D2. Therefore, the
calculated d-dimensional action representation vector for the MHIXOY is referred to
as GMHIXOY. Since the vector g is sparse, the feature vector computation is flexible. One
can take a look at the work in [30] for deeper knowledge in GLAC.

3.2 Action representation

The vectors GMHIXOY, GMHIYOZ and GMHIXOZ are gained by passing the set of
MHI to the GLAC individually. Those three action vectors are fused to a single
vector as GMHI = [GMHIXOY;GMHIYOZ;GMHIXOZ] to represent an action with mo-
tion image based texture features. In the same way, the vector GSHI = [GSHIXOY;
GSHIYOZ;GSHIXOZ] is obtained with the end by end concatenation of the SHIs to
describe the action by static image based texture features. Clearly, the GMHI and the
GSHI vectors are complementary to each other and thus we combine them to a single
vector to represent an action at optimal level. We think that our action representation
enhances the discriminating capacity of the proposed system.

3.3 Action Classification

It has been turn out that the l2-regularized Collaborative Representation Classifier
(l2-CRC) is able to exhibit the promising outcome in action labeling by [14, 23].
Hence, the fused version of GMHI and GSHI is fed into the l2-CR C to predict the
class of a new action sample. However, for an action dataset with C action categories,
the l2-CRC consists of a dictionary of n training vectors as P = [P1, P2,………,
PC] = [p1, p2,………, pn]ϵRD × N, here D is the length of a sample and N stands for

the total number of training action vectors. Also, P j∈RD�M j ; j ¼ 1; 2;……;Cð Þ is used
to indicate a set of training action vectors with the class label j and piϵRD(i = 1, 2,

Fig. 5 GLAC computing mask patterns for Kϵ{0, 1}

Multimedia Tools and Applications



… , n) denotes the ith action vector. However, a test action vector SϵRDcould be
figured out as

S ¼ Pβ ð7Þ
In the above equation, β is the N-dimensional column vector corresponding to the
coefficients which are equal to the training vectors. As described in [54], solution of
Equation (7) is not possible directly and hence the equation is solved through the
following optimization problem.

β̂̂¼ argmin
β

S−Pβk k22 þ μ Aβk k22
n o

ð8Þ

In Equation (8), A is known as Tikhonov regularization matrix [60] and μ is the regularization
parameter. The tuning of μ is very important to get the optimal action classification. The term
involved with A ensures the employment of the former information of the solution by utilizing
the technique as discussed in [6, 12, 16]. The training vectors that are not close to the test
vector are allocated less weight than the vectors that are very similar to the test sample. Finally,
the matrix A ∈ RD ×Nis configured as

A ¼
v−p1k k2
0

0
v−p2k k2 ⋯

0
0

⋮ ⋱ ⋮
0 ⋯ v−pnk k2

2
664

3
775 ð9Þ

By [27], β̂ could be determined as follows:

β̂̂¼ PTP þ μATA

 �−1

PTS ð10Þ

Now, β̂ can be decomposed into C subsets with the category of the training vectors and which

can be expressed as β̂¼ β̂1; β̂2; β̂3;………; β̂C

h i
. Eventually, the class label of the test vector

S is evaluated by

class Sð Þ ¼ argmin
j∈ 1; 2;……;Cf g q j

n o
; ð11Þ

where qj is defined by:

qj ¼ S−P jβ̂̂j

��� ������ ���
2
: ð12Þ

4 Experiment

The introduced approach is tested on a CPU platform with an Intel i7–4790 Quad-core CPU
@3.60 GHz and a RAM of 8GB. Our system is evaluated on the MSRAction3D [33], DHA
[35], and UTD-MHAD [26] action samples comprehensively.
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4.1 Results on the MSRAction3D dataset

MSRAction3D dataset [33] is organized with samples of 20 action categories. Each sample
video was taken by 2 or 3 times from 10 individuals with a depth camera. The contents of the
dataset are of: Bhigh wave (1)^, Bhorizontal wave (2)^, Bhammer (3)^, Bhand catch (4)^,
Bforward punch (5)^, Bhigh throw (6)^, Bdraw x (7)^, Bdraw tick (8)^, Bdraw circle (9)^,
Bhand clap (10)^, Btwo hand wave (11)^, Bside boxing (12)^, Bbend (13)^ Bforward kick
(14)^, Bside kick (15)^, Bjogging (16)^, Btennis swing (17)^, Btennis serve (18)^, Bgolf
swing (19)^, Bpick up and throw (20)^. The dataset is actually contains the gaming action
videos with inter-class similarity issue as observed between draw x and draw tick. We adopt
the similar assessment setup by following [33, 58, 60] and [47] to have a fair comparison of the
proposed system. In Fig. 6, a couple of depth maps are shown as action example of the dataset.

4.1.1 First experimental setup and results

In this setup, the entire 20 action classes are put into three sets (see Table 1). We carry out test
one, test two and cross subject test on each action set according to the work in [33, 60]. In
GLAC, we always employ the Roberts operator to calculate the gradient vector in MHI /SHI as
the Roberts operator is the most compact and most effective compared to other operators [30].
In the whole evaluation, the GLAC parameters’ pair (D, Δr) is set to (8, 1) to operate the
descriptor on the MHIs and SHIs with 5-fold cross validation strategy. The spatial bin
parameter is tuned as bs = 1 × 2 similarly. The l2-CRC parameter μ is also tuned to 0.0001
in the same manner. In this setting, the dimension of an action representation vector is 3168
and thus, our work employs the Principle Component Analysis (PCA) to improve the
classification performance of the system. In PCA, the principle components which are account
for 99% of the entire variation are retained. The dimension of feature vectors, after using the
PCA algorithm, is shown in the corresponding accuracy table of each test case.

In test one, 1/3 action samples relevant to all the action classes in each action set are
employed in training set and the rest sample of those classes of the set are taken in test set. The
alone and average classification outcomes concerning the AS1, AS2 and AS3 are depicted in
Table 2. The table indicates the introduced approach (i.e., the combination of GMHI and

Fig. 6 Example of action snaps in MSR-Action3D dataset
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GSHI) attains 99.34% average recognition accuracy. The confusion matrices in this test are
represented in Fig. 7. The confusion matrix contains information about actual and predicted
labels as done by the classifier and thus, summarizes the performance of a classification
algorithm. In our case, rows of each confusion matrix represent the actual labels for actions and
columns represent the labels predicted by the classifier.

However, our recognition method cannot reach classification accuracy of 100% as the hand
catch, draw x and tennis serve actions are confused with high wave, draw circle and tennis
swing respectively (see Fig. 7). However, the confusion/misclassification rates are very small
and confusion mostly happens for recognizing analogous actions.

The classification outcome by GMHI alone and by GSHI alone are also reported in the
table. Their recognition accuracies are not promising as the proposed method. Only the GMHI
based system gains an equivalent result (which is 99.33%) to the proposed method for the
AS3. It is clear that the recognition accuracies using the GMHI features outperform the
accuracies based on the GSHI features. Although the GMHI achieves superiority over the
GSHI features, but the GMHI features cannot recognize all actions in the dataset. Besides, the
GSHI features are not showing inferior results for all actions compared to the GMHI features.
Overall, the GMHI features may achieve the promising recognition performance for several
specific actions and the GSHI features can be inferior (for certain action, the reverse may also
happen). For example, in Fig. 8, the GMHI features show the higher recognition accuracy than
the GSHI features to classify the high wave action in AS2. On the other hand, the hand catch
action in AS2 is recognized more accurately using the GSHI features than using GMHI
features. From above, it is clear that these two descriptors are complementary enough and thus,
their fusion may improve the recognition accuracy considerably. As a result, by way of
merging the GMHI vectors and the GSHI vectors, the whole recognition outcome is upgraded
significantly on the situations while utilizing the GMHI features only or the GSHI features
only. As instance, the proposed approach has 1% more recognition rate GMHI than and 9%
more recognition rate than GSHI on AS1. It noticeably demonstrates the benefit of fusing
these features for increasing the recognition accuracy. To further investigate the enhancement,

Table 2 Recognition results on the three action sets in test one

GMHI GSHI GMHI +GSHI Feature dimension

Test One AS1 98.7 90.7 100 70
AS2 96.7 94.7 98.69 37
AS3 99.33 94.00 99.33 66
Average 98.24 93.13 99.34 –

Table 1 Three subsets of the MSR-Action 3D dataset

Label AS1 Label AS2 Label AS3

2 Horizontal wave 1 High wave 6 High throw
3 Hammer 4 Hand catch 14 Forward kick
5 Forward punch 7 Draw x 15 Side kick
6 High throw 8 Draw tick 16 Jogging
10 Hand clap 9 Draw circle 17 Tennis swing
13 Bend 11 Two hand wave 18 Tennis serve
18 Tennis serve 14 Forward kick 19 Golf swing
20 Pickup throw 12 Side boxing 20 Pickup throw
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we observe comparison regarding individual action type recognition accuracy relevant to the
introduced approach,GMHI andGSHI in all the action sets in Fig. 8. As obvious in the figure,
the introduced fusion approach is capable to increase the action categorization accuracy for a

Fig. 7 Confusion matrices in test one

Fig. 8 Class specific accuracies in test one
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greater portion of the twenty actions, e.g., hammer, draw tick, and draw x. It should be noted
that the same action could be confused in the proposed method as well as inGMHI andGSHI.
But the confusion rate is comparatively lower in the fusion method.

In Test Two, the l2-CRC employs 2/3 action samples as training samples of the entire
samples in every action set. The remaining samples of the set are engaged in the test stage. The
classification outcomes for the GMHI, GSHI and their combination version are illustrated by
Table 3. In the table, it can be seen for all the action sets, our proposed system exhibits
superiority over the GMHI and GSHI methods notably. The introduced approach gains 100%
classification rate for the three sets whereas the GMHI and GSHI cannot do it. The GMHI
based approach shows 100% recognition outcome for AS3 only. The recognition accuracy for
every class can be found in Fig. 9 to become clearer about the supremacy of the proposed
approach over the GMHI and the GSHI approaches. Besides, confusion between two actions
are absent in the proposed method where confusions are occurred in GMHI and GSHI
methods (see Fig. 10).

In Test Three/Cross Subject Test, the corresponding action samples of the individuals 1, 3,
5, 7, and 9 are used in the l2-CRC training samples and the samples from actors 2, 4, 6, 8, and
10 are passed to the l2-CRC as query samples. Form Table 4, it can be seen that the introduced
method attains enhanced results for all aspects than others. More precisely, the proposed
system outperforms GMHI by 7% and GSHI by 14%. It should be noted that our method

Fig. 9 Class specific accuracies in test two

Table 3 Recognition results on the three action sets in Test Two

GMHI GSHI GMHI + GSHI Feature dimension

Test Two AS1 98.6 95.9 100 151
AS2 98.7 97.3 100 137
AS3 100 97.3 100 149
Average 99.1 96.83 100
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couldn’t gain 100% recognition accuracy by avoiding the confusion between similar actions
(see Fig. 12) but the fusion method leads lower confusion compared to GMHI and GSHI
methods. Figure 11 demonstrates the class-wise recognition outcomes for all the approaches.

The recognition outcomes of the proposed system are also compared with methods which
were assessed on MSR-Action3D dataset through following the same experimental manner-
isms. Table 5 exhibits the comparison in average recognition accuracy (%) for all the test
strategies. Note that, the table includes those methods which were validated on MSR-
Action3D dataset by analogous experimentations. The maximum classification outcome is
focused by bold face. It is can be observed, our system attains supremacy over all the systems
listed in the table. Furthermore, the proposed approach exhibits the state-of-the-art recognition
rates of 99.34%, 100% and 97.3% in the test one, test two and cross subject test respectively.
Especially for the most challenging cross subject test, the proposed approach beats the listed
methods significantly, leading to 4.1% improvement over the second highest accuracy (93.2%
in [5]). In addition, the recognition system shows superiority over the deep learning systems

Fig. 10 Confusion matrices in test two

Table 4 Recognition results on the three action sets in Cross Subject Test

GMHI GSHI GMHI + GSHI Feature dimension

Cross Subject Test AS1 96.23 87.74 98.11 40
AS2 86.73 80.53 94.69 33
AS3 93.75 87.5 99.11 65
Average 92.23 85.25 97.3
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reported in [52]. The action classification results based on GMHI and GSHI methods are also
represented in the table.

Fig. 12 Confusion matrices in cross subject test

Fig. 11 Class specific accuracies in cross subject test
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4.1.2 Second experimental setup and results

The evaluation method followed by [47, 58] is also employed here to have a fair comparison.
In this setup, we employ all the action classes instead of splitting them into several sets of
action classes. The action samples taken by the persons of index 1, 3, 5, 7, 9 are utilized for
passing to the classifier as training samples and the samples about the rest subjects are used as
test samples. We use D = 8, Δr = 1, bs = 1 × 3 and μ = 0.0001 as optimal values by setting them
with the similar technique as discussed in the first experimental setup. The length of feature
vector is shrinking to 4752 to 85 by the PCA. Table 6 presents the recognition accuracy based
comparison of our method with other methods with same evaluation strategy. The table
contains recognition systems which were tested on the same dataset and same experimental
setup. We also compare our system with the deep structured learning system described in [59].

Table 5 Average accuracy comparison on the MSR Action 3D dataset on the first setting

Methods Test One (%) Test Two (%) Cross Subject Test (%)

Bag of 3D Points [33] 91.6 94.2 74.7
DMM-HOG [60] 95.8 97.4 91.6
DMM [14] 97.4 99.1 90.5
DMM-LBP-FF [10] 98.7 100 94.9
DMM-LBP-DF [10] 98.2 100 94.7
STOP [47] 96.8 98.3 87.5
HOJ3D [30] 96.2 97.2 79.0
Skeletons Lie Group [45] – – 92.5
Evolutionary Joint Selection [5] – – 93.2
MS [52] 93.6 94.3 86.3
SMF [52] 96.7 98.7 89.1
BDL [52] 94.1 95.6 87.6
SMF-BDL [52] 97.3 99.1 90.8
Our Method (GMHI + GSHI) 99.34 100 97.3

Table 6 Recognition accuracy
comparison on the MSR Action 3D
dataset on the second setting

Method Accuracy (%)

Random Occupancy Pattern [48] 86.5
DMM-HOG [60] 88.7
HON4D [39] 88.9
DSTIP [55] 89.3
Moving Pose [62] 91.7
Actionlet Ensemble [50] 88.2
Skeletons Lie group [45] 89.5
Skeletal Quads [22] 89.9
Super Normal Vector [58] 93.1
2D-CNN [59] 91.2
3D-CNN [59] 86.1
HOG3D + LLC [29] 90.9
Hierarchical 3D Kernel [61] 92.7
DMM-LBP-DF [10] 91.9
DMM-LBP-DF [10] 93.0
HP-DMM-CNN [21] 92.3
BoA [21] 86.9
Our Method (GMHI + GSHI) 94.5
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Our method outperforms the method 2D-CNN [59] by 3.3% and the method 3D-CNN [59] by
8.4%. The comparative classification outcomes can be found in their relevant papers. From
Table 6, it should be noted that our system significantly exhibits supremacy over the deep
learning based methods. Fig. 13 illustrates the confusion matrix of this setup.

4.2 Results on the DHA dataset

DHA dataset [35] includes some actions of Weizmann dataset [28]. The DHA dataset has
samples of 23 action classes where the descriptions of samples of 1 to10 categories are similar
to the Weizmann dataset [1]. The 23 types are: Barm-curl (1)^, Barm-swing (2)^, Bbend (3)^,
Bfront-box (4)^, Bfront-clap (5)^, Bgolf-swing (6)^, Bjack (7)^, Bjump (8)^, Bkick (9)^, Bleg-
cur (10)^, Bleg-kick (11)^, Bone-hand-wave (12)^, Bpitch (13)^, Bpjump (14)^, Brod-swing
(15)^, Brun (16)^, Bskip (17)^, Bside (18)^, Bside-box (19)^, Bside-clap (20)^, Btai-chi (21)^,
Btwo-hand-wave (22)^, Bwalk (23)^. There are 483 action samples in the dataset. Those

Fig. 13 Confusion matrix on the MSRAction3D dataset on setting 2

Fig. 14 Sample depth images of different actions from the action dataset DHA
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samples are recorded from 21 persons (12 males and 9 females). The dataset is challenging
enough since different action classes have similar motions such as leg-curl and leg-kick, run
and walk, etc. Example of sample depth action frames of multiple human actions in the action
dataset is illustrated in Fig. 14. The set of action samples captured from performers 1, 3, 5, 7, 9,
11, 13, 15, 17, 19, and 21 are involved in the training session and the samples obtained from
the remaining actors are engaged in test state. For this dataset, D = 8, Δr = 1, bs = 1 × 2 and μ =
0.0001are chosen by the earlier discussed method. The dimension of feature vector is
shortened from 3168 to 252 by the PCA algorithm. For DHA dataset, the comparison of
accuracy for different techniques is shown in Table 7, with the techniques evaluated on the
same dataset. In Table 7, it can be seen that our system attains a remarkable recognition rate of
99.1%. From Fig. 15, we can observe, the proposed method classifies 21 actions among 23 by
the accuracy of 100%. Moreover, the comparison of our system with other systems by similar
experimental setup demonstrates that our system achieves outstanding outcomes over all the
methods included in Table 7.

4.3 Results on UTD-MHAD dataset

The UTD-MHAD [9] dataset includes 861 action samples of 27 action classes. All action
samples are generated by 8 persons (4 females and 4 males) where everybody takes 4 trials for
each action class. The list of 27 classes are: Bright arm swiping to the left (1)^, Bright arm

Table 7 Recognition accuracy
comparison on the DHA dataset Method Accuracy (%)

D-STV/AS [35] 86.8
SDM-BSM [36] 89.5
D-DMHI-PHOG [26] 92.4
DMPP-PHOG [26] 95.0
DMM-LBP-DF [10] 91.3
DMMs-FV [15] 95.4
3DHoT-MBC [65] 96.7
Our Method (GMHI + GSHI) 99.1

Fig. 15 Confusion matrix on the DHA dataset
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swiping to the right (2)^, Bright hand wave (3)^, Btwo hand front clap (4)^, B right arm throw
(5)^, Bcross arms in the chest (6)^, Bbasketball shoot (7)^, Bright hand draw x (8)^, Bright hand
draw circle (clockwise) (9)^, Bright hand draw circle (counter clockwise) (10)^, Bdraw triangle
(11)^, Bbowling (right hand) (12)^, Bfront boxing (13)^, Bbaseball swing from right (14)^,
Btennis right hand forehand swing (15)^, Barm curl (two arms) (16)^, Btennis serve (17)^, Btwo
hand push (18)^, Bright hand knock on door (19)^, Bright hand catch an object (20)^, Bright
hand pick up and throw (21)^, Bjogging in place (22)^, Bwalking in place (23)^, Bsit to stand
(24)^, Bstand to sit (25)^, Bforward lunge (left foot forward) (26)^, Bsquat (two arms stretch
out) (27)^. The dataset considers diverse action classes such as sport actions (e.g., bowling),
hand gestures (e.g., draw x), daily activities (e.g., knock on door), and training exercises (e.g.,
arm curl). Some example depth maps of the dataset are figured out in Fig. 16. The samples
provided by the players 1, 3, 5, and 7 are included in the training set and the samples captured
from residual actors are placed in the test set. The system uses D = 8, Δr = 1, bs = 3 × 5 and μ =
0.0001 to obtain the expected outcome. The length of feature vector is reduced from 23760 to
94 by PCA. The comparison between our system and other existing systems (evaluated on
UTD-MHAD dataset) are shown in Table 8. From the table, it can be seen, the proposed

Fig. 16 Sample depth images of different actions from the dataset UTD-MHAD

Table 8 Recognition accuracy
comparison on the UTD-MHAD
dataset

Method Accuracy (%)

Adaboost.M2 [25] 83.0
DMM-HOG [60] 81.5
Kinect [9] 66.1
Inertial [9] 67.2
Kinect & Inertial [9] 79.1
3DHoT-MBC [65] 84.4
HP-DMM-CNN [21] 82.8
BoA [21] 85.4
Optical flow CNN [21] 82.6
Structural Average Curves [63] 91.7
Our Method (GMHI + GSHI) 89.5

Multimedia Tools and Applications



method attains higher recognition accuracy of 5.1% than the best existing approach (the
accuracy of the indicated algorithm is 84.4%) stated in [65]. The method as described in
[63] outperforms our method by 2.2% but it is noticeable that the method in [63] was evaluated
on the RGB action data whereas our method uses depth data. In fact, this type of comparison is
not fair although we consider it in our work. For more clarification of the performance of our
method, the confusion matrix is illustrated in Fig. 17.

5 Conclusion

This paper has mainly proposed an effective action representation strategy by jointly using two
sets of features. The system fuses the motion image based texture features (i. e. , GMHI) with
the static image based texture features (i. e. , GSHI) to represent a depth action with optimal
discriminatory power. The GMHI is computed by passing the MHIs to the GLAC algorithm
and the GSHI is gained by operating the GLAC on the SHIs. Experimental evaluations are
carried out based on three popular action datasets such as MSR-Action3D, DHA, and UTD-
MHAD. The evaluation on the MSR-Action3D dataset is considered with two different
experimental strategies. In the first strategy, the proposed method provides the recognition
accuracy of 97.3% for the most challenging cross subject test. In the second strategy, the
considerable recognition outcome is of 94.5%. In both settings, the recognition results are
compared with the results based on hand-crafted features as well as deep learning models.
However, the proposed method shows superiority over them. Moreover, the introduced system
shows 99.1% recognition rate for the DHA dataset and 89.5% recognition rate for the UTD-
MHAD dataset. Those outcomes could be considered as remarkable since both are very
complex datasets. Overall experimental results for the datasets revealed that the proposed
system consistently outperforms the other reported methods by achieving the state-of-the-art
accuarcy.

The confusion matrix of each experimental result indicates that the proposed method may
still face challenge to reduce the confusion between two similar motion pattern actions such as
Draw x and Draw tick; Draw x and Draw circle (see Fig. 13). The computed MHI/SHI
contains somewhat similar motion patterns for two different action classes due to apparent

Fig. 17 Confusion matrix on the UTD-MHAD dataset
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similarity of some depth action images for those actions. For example, some portions of the
MHI/SHI for Draw x and Draw tick actions are similar and thus the confusion is observed
between them in Fig. 13. This can make an interesting future task. In the future work, to
improve the action representation through the MHI and SHI, we plan to split an action video
into multiple video segments and to construct MHI and SHI for each segment. The technique
implies a number of MHI and SHI corresponding to an action video and will capture a more
appropriate description as compared to the use of a single MHI and SHI. Besides, the future
scheme may provide sufficient MHI and SHI images for each action to train a deep learning
model. As a result, we also aim to build a 2D deep learning model, e.g., 2D CNN, to feed those
2D images to the model to recognize human action more robustly.
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