
Global stability properties for a delayed
virus dynamics model with humoral

immunity response and absorption effect

B. G. Sampath Aruna Pradeep
Department of Mathematics,

University of Ruhuna,
Matara, Sri Lanka.

Email: sampath@maths.ruh.ac.lk

Hazrat Ali
Department of Electrical Engineering,

COMSATS Institute of Information Technology,
Abbottabad, Pakistan.

Email: hazratali@ciit.net.pk

Abstract—A model for virus infection with ab-
sorption effect and humoral immunity response
consisting of system of delay differential equa-
tions has been investigated. By direct calculations,
the basic number of reproduction and humoral
immune-activated reproduction numbers which are
also known as threshold values have been obtained.
The equilibria of the proposed model, the infection
free equilibrium, humoral immune-inactivated equi-
librium and humoral immune-activated equilibrium
which are completely based on the basic number
of reproduction, and humoral immune-activated re-
production number have been found by directly
solving the system. Results obtained for Lyapunov
functionals and using LaSalle’s invariance principle
with sufficient conditions, are: (i) the infection free
equilibrium satisfied the global asymptotic stability
criteria if the basic reproduction number is below
unity or equal to unity. (ii) the humoral immune-
inactivated equilibrium is globally asymptotically
stable, provided that the humoral immune-activated
reproduction number is below unit or equal to unity
and the basic reproduction number exceeds unity,
and (iii) the humoral immune-activated equilibrium
satisfies the global asymptotic stability criteria for the
case when humoral immune-activated reproduction
number exceeds unity.

I. INTRODUCTION

Recently, many mathematicians have inves-
tigated dynamic properties of some dangerous
viruses. Such studies include the hepatitis B and
C viruses (HBV and HCV), the dengue virus and

the HIV. These analysis and results give more
information to drug designers to produce effective
medicines or vaccines. In 1996, Nowak and Bang-
ham [1] proposed a model which was based on
ordinary differential equations to investigate the vi-
ral dynamics in vivo. Based on the model, various
kinds of models emerged (see, for examples,[3],
[2]) by taking the state variables x(t), y(t) and v(t)
respectively representing the concentrations of the
free virus particles, infected and uninfected cells in
the body at time t. Further, authors of the articles
[4], [6] and [5] have used the saturation response
function, the Beddington-DeAngelis functional re-
sponse and the non-separable form nonlinear inci-
dence rate function, respectively. Zhang et al. [8]
have considered a model with both terms cell-to-
cell transmission as well as cell-to-virus infection,
and have also studies the cure rate. Guo and Ma
[7] have included apoptosis effect in to a delay
differential equation system expecting the model
to be biologically more sensible.

It is well known that when some viruses enter
into the body, the immune system is activated and
respond against them. As a result, the immune
response which has two main lymphocytes B and T,
(are also known as humoral and cellular immunity)
helps to clean the infected cells and the viruses. Ac-
cording to [9], for malarial infections, the humoral
immunity response tends to be more effective as
compared to the cellular immunity response. Au-
thors in [10], [11], [12], [13], have reported virus
dynamics models with humoral immunity response978-1-5090-1241-1/17/$31.00 c©2017 IEEE



with cellular immunity response [15] or with both
[14]. It can be seen that in most of the studies, virus
dynamics models have been considered ignoring
the absorption effect or considering reduction of
the pathogens in the blood volume due to absorp-
tion into the uninfected cells. Recently, Pradeep
and Ma [18], [19] and Xu [20] have studied de-
layed virus dynamics models with absorption effect
with nonlinear functional response. The authors
have obtained rigorous global dynamical properties
by defining suitable Lyapunov functions and using
LaSall’s invariance principle ignoring the effect
of the immunity system. Motivated by the above
studies, we consider adopting the delayed system:

ẋ(t) = λ −ax(t)−βx(t)v(t),
ẏ(t) = βe−mτ x(t− τ)v(t− τ)−by(t),
v̇(t) = γy(t)− cv(t)− pu(t)v(t)−βx(t)v(t),
u̇(t) = δu(t)v(t)−du(t),

(I.1)
where u(t) represents concentration of the B cells
at time t and rest of state variables have the
same meaning as mentioned above. Uninfected
cells are recruited at rate λ . δ is the proliferate
at rate contacting B cells with virus and β is
the infection rate. p is the B cells neutralization
rate and γ is the rate of free virus production
given the infected cells. Let m be the constant
death rate of the infected cells having the ability
to produce viruses. Therefore, the term e−mτ gives
the surviving probability. τ is the time period taken
by a virus to enter into uninfected cell and infects
the cell and produces virus from it. The parameters
defined in model (I.1) are positive, while τ ≥ 0.

Next, we investigate existence, non-negativity
and ultimate boundedness of the solutions of model
(I.1).

Let D = D([−τ,0] , R4
+) be the Banach space.

The initial condition for model (I.1) can be written
for θ ∈ [−τ,0],

x(θ) = φ1(θ), y(θ) = φ2(θ),
v(θ) = φ3(θ) u(θ) = φ4(θ)

(I.2)

where φ = (φ1,φ2,φ3,φ4) ∈ D.

Theorem I.1. Under the initial condition (I.2), the
solution (x(t), y(t), v(t), u(t)) of model (I.1) is
existent, non-negative and unique, and bounded on
[0,+∞).

Proof: The existence and uniqueness of the
solution can be easily proven by using the theorems
in [17]. Let us show that the boundedness and non-
negativeness of the solution (x(t), y(t), v(t),u(t))
on [0,b). Considering the model (I.1) (first equa-
tion) for t ∈ [0,τ]∩ [0,b), we have that

ẋ(t) = λ −ax(t)−βx(t)v(t),
≥ −(a+βv(t))x(t).

Hence,

x(t)≥ φ1(0)e−
∫ t

0(a+βv(s))ds.

Similarly, from model (I.1) (second equation) for
t ∈ [0,τ]∩ [0,b), we have that

ẏ(t) = βe−mτ
φ1(t− τ)φ3(t− τ)−by(t)

≥ −by(t).

Hence,
y(t)≥ φ2(0)e−bt .

Using similar argument, one can show
that v(t) ≥ φ3(0)e−

∫ t
0(c+pu(s)+βx(s))ds and

u(t) ≥ φ4(0)e
∫ t

0(δv(s)−d)ds. Hence, model (I.1)
has positive solutions on [0,b). Now, let us show
the ultimate boundedness of the solution. Based
on the first equation, one has that

ẋ(t)≤ λ −ax(t).

Hence, it has that limsupt→+∞ x(t)≤ λ/a.

Define the following function:

Z(t) = x(t)+ y(t + τ).

From the first two equations of model (I.1), it has
that

Ż(t)≤ λ −min(a,b)Z(t).

Hence, it has that limsupt→+∞ Z(t)≤ λ/min(a,b).
From the third equation, one has that

v̇(t)≤ λγ

min(a,b)
− cv(t).

Hence, it has that limsupt→+∞ v(t)≤ λγ

cmin(a,b) .

Define the following function:

H(t) = δv(t)+ pu(t).



From the last two equations of model (I.1), it has
that

Ḣ(t)≤ δγ
λ

cmin(a,b)
−min(c,d)H(t).

Hence, it has that limsupt→+∞ H(t) ≤
δγλ/(cmin(a,b).min(c,d)). Therefore, it has
from solutions for functional differential equations
(based on the continuation theorem), that the
solution (x(t), y(t), v(t), and u(t)) is existent,
non-negative and unique, and bounded on [0,+∞).

Model (I.1) always gives an infection free equi-
librium, E0(x0 = λ/a,0,0,0). The basic reproduc-
tion number for model (I.1) can be found as

R0 =
βλγe−mτ

b(βλ +ac)
.

Then, there exists an infected with humoral immu-
nity inactivated equilibrium E1(x1,y1,v1,0), such
that;

v1 =
(βλ+ac)(R0−1)

cβ
, x1 =

cb
β (γe−mτ−b) ,

y1 =
βe−mτ x1v1

b . .

The humoral immune-activated reproduction num-
ber of model (I.1) can be found as

R1 =
δβλγe−mτ

b[(βλ +ac)δ + cβd]
.

There exists an infected with humoral immunity
activated equilibrium E2(x2,y2,v2,u2) where

v2 =
d
δ
, y2 =

βe−mτ x2d
bδ

,

x2 =
λδ

βd+aδ
, u2 =

(βλ+ac)δ+cβd
p(βd+aδ ) (R1−1).

Next, let us investigate the stability properties
of the equilibria. In this study, we have not given
the local stability properties because the global sta-
bility properties are stronger than the local stability
properties. In [16], the author has given a method to
find appropriate Lyapunov function which can be
helpful for investigation of the global properties
of a basic virus dynamic model. In this study,
we extend those results by using similar type of
Lyapunov functions.

Theorem I.2. If R0 ≤ 1, the infection free equi-
librium, E0 satisfies the global asymptotic stability
criteria.

Proof: Case I: Let us first take γe−mτ−b > 0.
Define,

M10 = V10 +
γ

γe−mτ −b
y+

b
γe−mτ −b

v

+
pγ

δ (γe−mτ −b)
u+

βγe−mτ

γe−mτ −b
U10.

where
V10 = x− x0− x0 ln

x
x0
.

V̇10 =
(

1− x0

x

)
(λ −ax(t)−βx(t)v(t)) ,

= ax0

(
2− x0

x
− x

x0

)
−βx0v0

(
xv

x0v0
− v

v0

)
,

and
U10 =

∫ 0

−τ

x(t + s)v(t + s)ds,

U̇10 = x(t)v(t)− x(t− τ)v(t− τ).

By taking the derivative of M10(t), we have that

Ṁ10 = V̇10 +
γ

γe−mτ −b
ẏ+

b
γe−mτ −b

v̇

+
pγ

δ (γe−mτ −b)
u̇+

βγe−mτ

γe−mτ −b
U̇10

= ax0

(
2− x0

x
− x

x0

)
− d pγ

δ (γe−mτ −b)
u

+
(βλ +ac)b

a(γe−mτ −b)
(R0−1).

The derivative is taken along the positive solutions
of model (I.1).

The term 2− x0/x− x/x0 is always negative
when x 6= x0 while equal to zero when x = x0.

If R0 ≤ 1, one can see that Ṁ10 ≤ 0, for t > 0.
It implies that E0 is stable. Further, Ṁ10 = 0
if (x,y,v,u) = E0. That is, E0 satifies the global
asymptotic stability criteria (by LaSalle’s invari-
ance principle)[17].

Case II: Again, let us take γe−mτ −b≤ 0.

Define

M11 = y+
b
γ

v+
pb
δγ

u

+βe−mτ

∫ 0

−τ

x(t +θ)v(t +θ)dθ .



By taking the derivative of M11(t) along the posi-
tive solutions of model (I.1), we have that

Ṁ11 = [βe−mτ x(t− τ)v(t− τ)−by]

+
b
γ
[γy− cv− puv−βxv]

+
pb
δγ

[δuv−du]

+βe−mτ [xv− x(t− τ)v(t− τ)],

=
β

γ
(γe−mτ −b)xv− bc

γ
v− pbd

δγ
u.

If γe−mτ ≤ b, one can see that Ṁ11 ≤ 0, for t > 0,
and E0 is stable. Further, Ṁ11 = 0 if (x,y,v,u) =E0.
That is, E0 satisfies the global asymptotic stability
criteria [17].

Note: Consider the function G(t) = 1− f (t)−
ln f (t), where f (t)> 0, for all t > 0. Then, function
G(t) has the properties, (i) G(t) is always negative
and (ii) G(t) = 0 if and only if f (t) = 0.

Remark: We use the notations xτ instead of
x(t − τ) and vτ instead of v(t − τ) for reducing
excess use of brackets.

Theorem I.3. If R1 ≤ 1 < R0 and a(γe−mτ −b)≥
bβv1 hold, the infected with humoral immunity
inactivated equilibrium E1 satisfied the global
asymptotic stability criteria.

Proof: Define,

M20 = x− x1− x1 ln
x
x1

+
m2γ

b

(
y− y1− y1 ln

y
y1

)
+m2

(
v− v1− v1 ln

v
v1

)
+

m2 p
δ

u+
m2γβe−mτ

b
U20,

where

U20 =
∫ t

t−τ

[x(θ)v(θ)− x1v1− x1v1 lnx(θ)v(θ)]dθ ,

and m2 = b/(γe−mτ −b).

By taking the derivative of M20(t) (The deriva-
tive is taken along the positive solutions of model

(I.1)), we have that

Ṁ20 =
(

1− x1

x

)
(λ −ax−βxv)

+
m2γ

b

(
1− y1

y

)(
βe−mτ xτ vτ −by

)
+m2

(
1− v1

v

)
(γy− cv− puv−βxv)

+
m2 p

δ
(δuv−du)

+
m2γβe−mτ

b

[
xv− xτ vτ + x1v1 ln

xτ vτ

xv

]
.

By substituting the values at the relevant equi-
librium point, λ = ax1 + βx1v1, cm2 = βx1 and
by1 = βe−mτ x1v1, one has that

Ṁ20 = ax1

(
2− x1

x
− x

x1

)
+βx1v1

(
2− x1

x
+m2

x
x1

)
+

m2γβe−mτ

b

(
1− xτ vτ

x1v1

y1

y
+ ln

xτ vτ

x1v1

y1

y

)
+

m2γβe−mτ

b

(
1− v1

v
y
y1

+ ln
v1

v
y
y1

)
+

m2γβe−mτ

b

(
1− x1

x
+ ln

x1

x

)
+

m2γβe−mτ

b

(x1

x
−2
)
+m2 p

(
v1−

d
δ

)
u,

= x1

(
a− bβv1

γe−mτ −b

)(
2− x1

x
− x

x1

)
+

m2γβe−mτ

b

(
1− xτ vτ

x1v1

y1

y
+ ln

xτ vτ

x1v1

y1

y

)
+

m2γβe−mτ

b

(
1− v1

v
y
y1

+ ln
v1

v
y
y1

)
+

m2γβe−mτ

b

(
1− x1

x
+ ln

x1

x

)
+

m2 p[δ (βλ +ac)+ cdβ ]

cβδ
(R1−1)u.

If R1 ≤ 1 < R0 and a(γe−mτ −b)≥ bβv1 , one
can see that Ṁ20 ≤ 0, for t > 0. It implies that the
infected with humoral immunity inactivated equi-
librium E1 is stable. Further, Ṁ20 = 0 if (x,y,v,u) =
E1. That is, the infected with humoral immunity



inactivated equilibrium E1 globally asymptotically
stable [17].

Theorem I.4. If 1 < R1 and a(γe−mτ −b)≥ βv2b
hold, the infected with humoral immunity activated
equilibrium E2 is globally asymptotically stable.

Proof: Defining the function for M30,

M30 = x− x2− x2 ln
x
x2

+
m2γ

b

(
y− y2− y2 ln

y
y2

)
+m2

(
v− v2− v2 ln

v
v2

)
+

m2 p
δ

(
u−u2−u2 ln

u
u2

)
+

m2γβe−mτ

b
U30,

where

U30 =
∫ t

t−τ

[x(θ)v(θ)− x2v2− x2v2 lnx(θ)v(θ)]dθ .

By taking the derivative of M30(t) (along the pos-
itive solutions of model (I.1)), we have that

Ṁ30 =
(

1− x2

x

)
(λ −ax−βxv)

+
m2γ

b

(
1− y2

y

)(
βe−mτ xτ vτ −by

)
+m2

(
1− v2

v

)
(γy− cv− puv−βxv)

+
m2 p

δ

(
1− u2

u

)
(δuv−du)

+
m2γβe−mτ

b

[
xv− xτ vτ + x2v2 ln

xτ vτ

xv

]
.

At the infected with humoral immunity activated
equilibrium E2 from model (I.1), it has that λ =
ax2 +βx2v2, c = γβx2e−mτ/b− pu2−βx2, by2 =
βe−mτ x2v2. By substituting these values into above
equation, it has that

Ṁ30 = ax2

(
2− x2

x
− x

x2

)
+βx2v2

(
1− x2

x
+m2

x
x2

+
m2γe−mτ

b
+

v
v2

−m2 +m2
v
v2
− m2γe−mτ

b
v
v2

)
+

m2γβe−mτ

b

(
1− xτ vτ

x2v2

y2

y
+ ln

xτ vτ

x2v2

y2

y

)
+

m2γβe−mτ

b

(
1− v2

v
y
y2

+ ln
v2

v
y
y2

)
+

m2γβe−mτ

b

(
1− x2

x
+ ln

x2

x

)
+

m2γβe−mτ

b

(x2

x
−2
)
,

= x2

(
a− βv2b

γe−mτ −b

)(
2− x2

x
− x

x2

)
+

m2γβe−mτ

b

(
1− xτ vτ

x2v2

y2

y
+ ln

xτ vτ

x2v2

y2

y

)
+

m2γβe−mτ

b

(
1− v2

v
y
y2

+ ln
v2

v
y
y2

)
+

m2γβe−mτ

b

(
1− x2

x
+ ln

x2

x

)
.

If 1 < R1 and a(γe−mτ −b) ≥ βv2b, one can see
that Ṁ30 ≤ 0, for t > 0. It implies that the infected
with humoral immunity activated equilibrium E2
is stable. Further, Ṁ30 = 0 if (x,y,v,u) = E2. That
is, the infected with humoral immunity activated
equilibrium E2 globally asymptotically stable [17].

II. CONCLUSION

In this study, we proposed and investigated
the stability behavior of a delayed virus dynamic
model with absorption effect and humoral immu-
nity response. It can be concluded that the global
dynamics properties are completely based on the
two threshold parameters R0 and R1. From the
results given in Theorem 1.2, if the basic repro-
duction number, which depends on negative expo-
nential on the inter-cellular time delay is below
unity or approaches unity, then the infection free
equilibrium satisfied the global asymptotic stability
criteria. The viruses are cleaned from the body and



the individual is not infected with virus disease. If
the time delays can be increased by some drug
therapies, it is possible to control the disease.
According to the results given in Theorem 1.3,
if the number of humoral immunity response re-
production is below unity or approaches unity and
the basic reproduction number is greater than one,
the infected with humoral immunity inactivated
equilibrium satisfied the global asymptotic stability
criteria. R1 is also defended on negative exponen-
tial on the inter-cellular time, which means that it
is impossible to clear out the viruses from the body
even if the inter-cellular time is increased. It is
conjectured that the infected with humoral immu-
nity inactivated equilibrium and the infected with
humoral immunity activated equilibrium should be
globally asymptotically stable without any addi-
tional condition. However, we have technical prob-
lem to prove the global stability properties without
these additional conditions. We leave it as an open
problem to for future study. Further, the system has
not occurred Hopf bifurcations although time delay
is involved, by changing the stability behavior at
the equilibria.
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