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ABSTRACT 
Sensors health monitoring is essentially important for safe and reliable functioning of safety-critical 

chemical and nuclear power plants.  Auto-associative neural network (AANN) based empirical sensor 

models have widely been reported in context of calibration monitoring. However, good generalization 

and effective robustness are the prime issues to be handled carefully during training of such ill-posed 

data driven models. To address above mentioned issues, several regularization heuristics such as 

training with jitter, weight decay, cross-validation Bayesian regularization etc. are suggested in 

literature. Apart from these regularization heuristics; traditional error gradient based supervised 

learning algorithms, for deep multilayered AANN models, are highly susceptible of being trapped in local 

optimum; hence constrain the prediction performance. In order to address poor regularization and 

robust learning issues, here, we propose a denoised auto-associative sensor model (DAASM) based on 

deep learning framework. The proposed sensor model is composed and regularized under denoising 

based learning objective. Full DAASM model comprises of multiple hidden layers which are pre-trained 

greedily in an unsupervised fashion under denoising autoencoder (DAE) architecture. In order to 

improve robustness, dropout heuristic and domain specific data corruption processes are exercised 

during unsupervised pre-training phase. The proposed sensor model is trained and tested on sensor 

data from a PWR type nuclear power plant. Accuracy, auto-sensitivity, Spillover and fault detectability 

metrics are used for performance assessment and comparison with extensively reported five layer 

AANN model by Kramer. Sensor fault detection and isolation competency is evaluated by employing 

residual based sequential probability ratio test (SPRT). 

Keywords 
Sensor Fault Detection, Calibration Monitoring, Process Monitoring, Nuclear Power Plants, Auto-

Associative Neural Network, Sensor Health Monitoring, Auto-encoder Networks, Sensor Validation, 

Auto-Associative Sensor Models, Denoised Auto-Encoder, Online Monitoring, OLM, Condition 

Monitoring. 

Abbreviations 

AANN  Auto-Associative Neural Network. 

K-AANN Kramer proposed Auto-Associative Neural Network 

DAASM  Denoised Auto Associative Sensor Model. 

NPP  Nuclear Power Plant. 

PWR  Pressurized Water Reactor. 

�����  Auto-Sensitivity. 

������  Cross-Sensitivity. 



 

 

DAE  Denoising Autoencoder. 

S  Observed sensor value 

�	  Model Predicted Sensor value. 

�
  Corrupted Sensor value. 

���  Salt and Pepper Noise. 

��  Additive Gaussian Noise. 

1. Introduction 

From safety and reliability stand point, sensors are one of the critical infrastructures in modern 

day automatic controlled nuclear power plants[1] . Decision for a control action, either by operator or 

automatic controller, depends on correct plant state reflected by its sensors. “Defense in depth” 
1
safety 

concept for such mission critical processes essentially requires a sensor health monitoring system. Such 

sensor health monitoring system have multifaceted benefits which are just not limited to process safety, 

reliability and availability but also in context of cost benefits from condition based maintenance 

approach[2][3]. A typical sensor health monitoring system may include tasks of sensor fault detection, 

isolation and value estimation [4]. Basic sensor monitoring architecture comprises two modules as 

depicted in Fig. 1. The first module implements a correlated sensor model which provides analytical 

estimates for monitored sensor’s values. Residuals values are evaluated by differencing the observed 

and estimated sensor values and are supplied to residual analysis module for fault hypothesis testing. 

These correlated sensor models are either based on the first principles models (e.g. energy 

conservation, material balance etc.) or history based data driven models[5]. However, sensor modeling 

using empirical techniques from statistics and artificial intelligence are an active area of research [6][7].  

 

 

 

 

 

 

 

                                                           
1
 Defense in depth safety concept requires mission critical systems to be redundant and diverse in implementation 

to avoid single mode failure scenerios. 

Figure 1: Integrated sensor estimation and fault detection architecture. 
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In order to model complex non-linearity in physical process sensors, auto-associative neural 

network based  sensor models had widely been used and reported for calibration monitoring in 

chemical processes [8][9][10][11]and nuclear power plants [12][13][14][15]. Data driven training 

procedures for such neural network based sensor models discover the underlying statistical regularities 

among input sensors from history data and tries to models them by adjusting network parameters. Five 

layers AANN is one of the earliest auto-associative architectures proposed for sensor and process 

modeling[8].  

In contrast to shallow single layered architectures , these multi-layered Neural architectures 

have flexibility for modeling complex non-linear functions [16][17].However,  harnessing the complexity 

offered by these deep NN models without over fitting requires effective regularization techniques. 

Several heuristics based standard regularization methods are suggested and exercised in 

literature[18][19] such as training with jitter (noise), Levenberg Marquardt training, weight decay, 

neuron pruning, cross validation, and Bayesian Regularization. Despite of all these regularization 

heuristics, the joint learning of multiple hidden layers via back propagation of error gradient, inherently 

suffers from gradient vanishing problem at the earlier layers [20]. This gradient instability problem 

restricts the very first hidden layer (closer to input) from fully exploiting the underlying structure in 

original data distribution.  Result is the poor generalization and prediction inconsistency. Problem get 

even more complex and hard due to inherently noisy and co-linearity in sensor data. 

Considering the complexity and training difficulty due to gradient instability in five layer AANN 

topology, Tan and Mayrovouniotis proposed a shallow network topology of three layers; known as Input 

Trained Neural network (ITN-network)[21]. However the modeling flexibility gets compromised by 

shallow architecture of ITN.   

The regularization and robustness issues associated with these traditional learning procedures 

motivate the need for complementary approaches. Contrary to shallow architecture approach by Tan 

and Mayrovouniotis[21], here, we are interested in preserving the modeling flexibility offered by many 

layered architecture without being compromised on generalization and robustness of the sensor model. 

Recent research on greedy layer wise learning approaches [22][23] have been found successful for 

efficient learning in deep multilayered Neural architectures for image, speech and Natural language 

processing [24]. So, for a multilayered DAASM model, we proposed to address poor regularization 

through deep learning framework. Contrary to joint multilayer learning methods for traditional AANN 

models, the deep learning framework employs greedy layer wise pre-training approach. Following the 

deep learning framework, each layer in the proposed DAASM model is regularized individually through 

unsupervised pre-training under denoising based learning objective. This denoising based learning is 

commenced under autoencoder architectures as elaborated in section 3. It essentially serves several 

purposes.  

1) Helps deep models in capturing robust statistical regularities among input sensors. 



 

 

2) Initializes network parameters in basin of attraction with good generalization properties 

[25][17].  

3) Implicitly addresses model’s robustness by learning hidden layer mappings which are 

stable and invariant to perturbation caused by failed sensor states.  

Moreover, robustness to failed sensor states is not an automatic property of AANN based sensor 

models but is primarily essential for fault detection. Consequently, traditional AANN based sensor model 

requires explicit treatment for robustness against failed sensor states. However, for the case of DAASM, 

an explicit data corruption process is exercise during denoising based unsupervised pre-training phase. 

The proposed corruption process is derived from drift, additive and gross type failure scenarios as 

elaborated in section 4.2. Robustness to faulty sensor conditions is an implicit process of denoising 

based unsupervised pre-training phase. Robustness of the proposed DAASM model, against different 

sensor failure scenarios, is rigorously studied and demonstrated through invariance measurement at 

multiple hidden layers in the DAASM network (see section 7). The full DAASM architecture and layer 

wise pre-training is detailed in section 4. We will compare the proposed DAASM based sensor model 

with an extensively reported five layer AANN based sensor model by Kramer. Both sensor models are 

trained on sensor data sampled from full power steady operation of a Pressurized water reactor. Finally, 

performance assessment with respect to accuracy, auto-sensitivity, cross-sensitivity and fault 

detectability metrics is conducted under section 8. 

2. Problem Formulation 

 

In context of sensor fault detection application, the purpose of a typical sensor reconstruction model is 

to estimate correct sensor value from its corrupted observation. The objective is to model relationships 

among input sensors which are invariant and robust against sensor faults. So, empirical learning for 

robust sensor relationships can be formulated as sensor denoising problem. However, contrary to the 

superimposed channel/acquisition noise, the term “denoising” specifically corresponds to the 

corruption caused by gross, offset and drift type sensor failures. Under such denoising based learning 

objective, the empirical sensor model can be forced to learn a function that captures the robust 

relationships among correlated sensors and is capable of restoring true sensor value from a corrupted 

version of it.  

 Let,  ����� and �
��� be the normal and corrupted sensor states related by some corruption process �(. ) as follow: 

 ����� = �(�����) 

Where,   �: �� → �� is a stochastic corruption caused by an arbitrary type sensor failure. The learning 

objective for denoising task can be formulated as. 

 



 

 

� = � ! min %&'()*+�, �����- − �����+//0     (1) 

Under minimization of above formulation, the objective of empirical learning is to search for � that best 

approximates �12. Further, we will formulate and learn such sensor value estimation and restoration 

function under neural network based auto-associative model driven by deep learning frame work. 

2.1.  Basic Deep Learning Framework 

Neural network research suggests that the composition of several levels of nonlinearity is key to the 

efficient modeling of complex functions. However, optimization of deep architecture with traditional 

gradient based supervised learning methods has resulted in sub-optimal solutions with poor 

generalization.  Joint learning of multiple hidden layers via back propagation of error gradient inherently 

suffers from gradient vanishing problem at the earlier layers, hence, constrain the hidden layers from 

fully exploiting the underlying structure in original data distribution. In 2006, Hinton in his pioneering 

work proposed a systematic greedy layer by layer training of a deep network. The idea is to divide the 

training of successive layers of a deep network in the form of small sub-networks and use unsupervised 

learning to minimize input reconstruction error. This technique successfully eliminates the short-

comings of the gradient based learning by averting the local minima. Deep learning framework employs 

a systematic three step training approach as follows.  

1. Pre-training one layer at a time in a greedy way; 

2. Using unsupervised learning at each layer in a way that preserves information from the input 

and disentangles factors of variation; 

3. Fine-tuning the whole network with respect to the ultimate criterion of interest. 

3. Building Block for DAASM. 

 

In relation to empirical modeling approach as formulated in section 2, Denoising autoencoder (DAE)[26] 

is the most promising building block for pre-training and composition of Deep Auto-associative sensor 

model. DAE is a variant of the traditional autoencoder neural network, where learning objective is to 

reconstruct the original uncorrupted input 3 from partially corrupted or missing inputs 34 . Under 

training criterion of reconstruction error minimization, DAE is forced to conserve information details 

about the input at its hidden layer mappings. The regularization effect of Denoising based learning 

objective pushes the DAE network towards true manifold underlying the high dimension input data as 

depicted in Fig. 2. Hence, implicitly captures the underlying data generating distribution by exploring 

robust statistical regularities in input data. A typical DAE architecture, as depicted in Fig. 3, comprise of 

an input, output and a hidden layer. An empty circle depicts a neuron unit. The input layer acts as a 

proxy layer to the original clean input. While, the red filed units in input layer are proxies to clean input 

units which are randomly selected for corruption under some artificial noise process. 5(3, 37 ) is an 

empirical loss function to be optimized during training process. 



 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let 38 be the original data vector with 9 = 1, 2, ..., N elements while 348 represents the partially corrupted 

version obtained through  corruption process :; . The encoder and decoder functions corresponding to 

DAE in Fig 3 are defined  as. 

ℎ(348) = �=(34) = >(?348 + A) 

BC(348) = !=D(ℎ) = >(?Eℎ(348) + AE) 

The encoder function �=(34) transforms input data to ℎ(348) mapping through a sigmoid type activation 

function >(3) =  (1 + G3H1I)12 at hidden layer neurons.   BC(348) is an approximate reconstruction of 3 

obtained through decoder function !=D(ℎ) through reverse mapping followed by sigmoid activation at 

output layer. While, J = KJ, JEL = K?, A, ?E, AEL are the weight and bias parametres corresponding to 

these encoder and decoder function.  

Figure 3: Basic Denoising Auto Encoder (DAE) scheme. An empty circle depicts a single 

neuron.  A filled circle depicts corrupted units in input vector. 
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Figure 2: Suppose training data (   ) concentrate near a low-dimensional 
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In relation to sensor reconstruction model as formulated in section 2, the above described DAE can be 

re- interpreted as follow. 

 3~� = Kd8L8e2�  

34~�
 = :;((d̃|d)) 

37~�	 = :;12,�
- 

 � are the input sensor values under fault free steady state operation. �
 is a partially corrupted input 

which is generated through an artificial corruption process :;  on selected subset in  input sensor set K d8L. �	 are the estimated sensor values by reconstruction function learnt on clean and corrupted input  � and �
. Network parameters J , for DAE, can be learned in an unsupervised setting through 

minimization of the reconstruction loss in equation 2 as follow. 

5(3, 37 ;  J)~5,�, �	 ;  J- = � ! min ∑ +� − �	+//jke2=     (2) 

 

 

4. DAASM Architecture and Regularization 

 

In order to capture complex nonlinear relationships among input sensors, a multilayered architecture is 

proposed for Denoised Auto-Associative Sensor Model (DAASM). Individual layers in network hierarchy 

are pre-trained successively from bottom to top. For a well regularized sensor model, the structure and 

optimization objective in greedy layer wise pre-training plays a crucial role. Two heuristics are applied 

for robust learning in DAASM as follow. 

1. Each successive layer in multi-layered DAASM assembly is pre-trained in an un-supervised 

fashion under denoising based auto-encoder (DAE) as elaborated in section 3. 

2.  To address robustness, data corruption processes for denoising based pre-training task are 

incorporated with domain specific failure scenarios which are derived from different types of 

sensor faults. These heuristics serve several purposes. 

• Forcing the DAE output to match the original uncorrupted input data acts as a 

strong regularizer. It helps avoid the trivial identity learning especially under 

over complete hidden layer setting. 

•  Denoising procedure during pre-training leads to latent representations that 

are robust to input perturbations. 

•  Addition of corrupted data set increases training set size and thus useful in 

alleviating over fitting problem. 



 

 

Full DAASM model is learnt in two stages 1) an unsupervised pre-training phase. 2) A supervised 

fine tuning phase. As shown in fig.4 , the pre-training phase follows a hierarchal learning process in 

which successive DAEs in the stack hierarchy are defined and trained in an unsupervised fashion on the 

preceding hidden layer activations. Full sensor model is constructed by stacking hidden layers from 

unsupervised pre-trained DAEs followed by a supervised fine tuning phase. For each DAE in the stack 

hierarchy, the optimization objective for unsupervised pre-training will remain same as in relation 2. 

However, weight decay regularization term is added to the loss function which constrains network 

complexity by penalizing large weight values. In relation 3, K?, ?EL are the network weight parameters 

corresponding to encoder and decoder function while l is the weight decay hyper-parametre. 

5,�, �	 ;  J- = 2m ∑ +� − �	+//jke2 + n/ ,‖W‖/ + ‖WE‖/ -       (3) 

In a typical DAE architecture, number of  input and output layer neuron  are fixed corresponding 

to input data dimension O, however, middle layer neuron counts OE can be adjusted according to 

problem complexity. Literature in deep learning suggests that under complete Middle layer (OE < O), 

for DAE architecture, results in dense compressed representation at the middle layer. Such compressed 

representation have tendency to entangle information.(i-e. change in a  single aspect of the input 

translates into significant changes in all components of the hidden representation[27](Vincent et al., 

2008). This entangling tendency directly affects the cross-sensitivity of sensor reconstruction model 

especially for the case of gross type sensor failure. Considering that, here, we choose for an over 

complete hidden layer setting(OE > O). Under over complete setting, denoising based optimization 

objective acts as a strong regularizer and inherently prevents DAE from learning identity function. 



 

 

 

 

Figure 4: DAASM Architecture and greedy Learning procedure. Greedy layerwise pre-training procedure is depicted by 

counter clockwise flow in the figure. 

 

 Anti-clockwise flow in fig. 4 shows architecture and greedy layer by layer unsupervised pre-training 

procedure for all hidden layers in DAASM stack. For each hidden layer ℎs, a DAE block is shown; in which 

an encoder function �=s(. ) and a decoder function !=s (. ) are learnt by minimizing the loss function 

corresponding to fault free reconstruction of the inputs as in relation 3. For the case of first hidden layer ℎ2, the corresponding DAE-1 is trained directly on sensor data using 5,�, �	, J- loss function in equation 

3. However, hidden layers ℎ/  through ℎt are learnt on data from preceding hidden layer activations 

using recursive relation in eq. 4. So the loss function corresponding to DAE-1 and DAE-2 can be re-

presented as 5,ℎs , ℎCs , J- where ℎC is an approximate reconstruction of ℎ. 

 

ℎs = �=s(ℎs12; ?s) = d9!u,?s  ℎs12 + As-  ;                1 ≤ w ≤ 5 = 3   (4) 

 〈?〉  are the network weights corresponding to encoder part in DAE.  
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The noise process :;& ,�
Z�- for DAE-1 corresponds to a Salt-and-pepper (SPN) type corruption 

process, in which a fraction of the input Sensor set S (chosen at random for each example) is set to 

minimum or maximum possible value (typically 0 or 1). The selected noise process models gross type 

failure scenarios and drives the DAE-1 network to learning invariance against such type of sensor 

failures. The noise functions :;|},ℎY2Zℎ2(d̃)- employs a corruption process in which ℎ2(�) and ℎ2,�
- 

from pre-trained DAE-1 will be used as the clean and noisy input for DAE-2 pre-training.  Finally, an 

additive Gaussian type corruption process (AGN): x4|x ∼  N (x, σ/) is used for DAE-3 noise function :;|�,ℎY/Zℎ/(�
)- . we will further mathematically formulate and discuss all these corruption processes in 

detail under section 4.2.  

These pre-trained layers will initialize the DAASM network parameters in basin of attractions 

which have good generalization and robustness property. In order to generate a sensor model that is 

fairly dependent on all inputs, “Dropout”[28] heuristic is applied on ℎt hidden units during DAE-3 pre-

training. Random dropouts make it hard for latent representations at ℎt to get specialize on particular 

sensors in the input set. Finally, pre-trained DAE’s are unfolded into a deep auto-associator network 

with 5 number of encoder and 5 − 1 decoder cascade as shown in unsupervised fine tuning phase in Fig 

3. The final network comprise of one input layer, one output and 25 − 1  hidden layers. The input 

sensor values flow through encoder cascade � = �=s � �=s12 o … �=2  using recursive expression in 

equation 4 and a decoder cascade ! = !=D2  � !=Ds�2 o … !=D�12 using following equations. 

ℎC� = ℎ�       (5) 

ℎCs = !=Ds (ℎs�2; ?sE) = d9!u,?sE ℎCs�2 + AsE-  ;                1 ≤ w ≤ 5 − 1 = 2  (6) 

�	 = !�,ℎC2- =  ?�E ℎC2 + A�E        (7) 

Where 〈?E, AE〉  are network weights and biases of the decoder part in DAE. The entire network is fine 

tuned using a semi heuristic based “Augmented Efficient  Back-propagation algorithm” , Proposed by 

M. J. Embrechts et.al [29] , with following minimization objective: 

5,�, �	 ;  J- = 2m ∑ +� − �	+//jke2 + n/ ∑ ‖W�‖///��e2     (8) 

A L-2 weight decay term is added to the above loss function for network regularization purpose during 

fine tuning phase. To circumvent the over fitting; an early stopping procedure, which uses validation 

error as proxy for the generalization performance, is used during fine-tuning phase.  

4.2. Corruption Process V(. ) for Invariance 

 

For the case of calibration monitoring, an ideal DAASM model should learn encoder and decoder 

functions which are invariant to failed sensor states. So during DAE based pre-training phase, 

engineered transformations from prior knowledge about the involved failure types are imposed on clean 

input. Different data corruption processes  :(. ) are devised for learning of each successive hidden layer. 



 

 

Denoising based learning objective drives the hidden layer mapings to get invariant against such 

engineered transformations on input data. It is important to understand that denoising based learning 

approach do not correct the faulty signal explicitly rather seek to extract statistical structure among 

input signals which is stable and invariant under faults. Hence implicitly estimates correct value for 

faulty signal. Two failure types are identified and defined as follow. 

• Gross Sensor Failure: it includes catastrophic sensor failures. Salt-and-pepper type 

corruption process in which a fraction ν of the input Sensor set S (chosen at random for 

each example) is set to minimum or maximum possible value (typically 0 or 1), is 

selected for modeling gross type failure scenarios. 

• Miscalibration Sensor Failure:it includes drift, multiplicative and outlier type sensor 

failures and is modeled through isotropic Gaussian noise(GS): x4|x ∼  N (x, σ/). Instead 

of selecting an arbitrarily simple noise distribution, we estimated the distribution of 

sensor’s natural noise and exaggerated it to generate noisy training data. 

We propose to distribute the denoising based invariance learning task across multiple hidden layers in 

the DAASM network. Both gross and miscalibration noise types are equally likely to occur in the input 

space. Gaussian type corruption process is not suitable for input data space � because of its low 

denoising efficiency against gross type sensor failures. Contrarily, salt-and-pepper type corruption 

process covers two extremes of sensors failure range. Hence, provide an upper bound on perturbation 

due to minor offset and miscalibration type sensor failures.  So, salt-and-pepper type corruption process 

is devised for DAE-1 pre-training as follow. 

:;& ,�
Z�- = ���
��
��
��
� d̃8 = d8   �ℎG G 9 ∉ �d̃8 = � �ℎG G 9 ∈ �

� = K0,1L �9Tℎ �Pr(0) = 2/Pr(1) = 2/
�

⋃ K�8….me��L8!e��8e2  �ℎG G �8 = [1, P] =  �PO() ¡ =  9PHST � �¢T9�P �PO P = 9PHST O9uGPd9�P £�
�¤
��
¥

   (9) 

Gross type sensor failures usually have high impact on cross-sensitivity and can trigger false alarms in 

other sensors. Such high cross-sensitivity effect may affects isolation of miscalibration type secondary 

failures in other sensors. In order to minimize the effect, a corruption procedure in which ℎ2(�) and ℎ2,�
- from pre-trained DAE-1 are proposed as the clean and noisy input for DAE-2 pre-training. This 

corruption method is more natural since it causes next hidden layer mappings to get invariant against 

cross-sensitivity effects and network aberrations from previous layer. The corruption process is 

supposed to improve invariance in  ℎ/ layer mappings against cross-sensitivity effects from gross type 

sensor failures. 

:;|},ℎY2Zℎ2(d̃)- = ¦ ℎY28 = ℎ28 ,�
-�ℎG G  �
 = :;& ,�
Z�- = ���§    (10) 



 

 

Here ℎ28 (d)   corresponds to hidden layer activations against clean sensors at the input layer while ℎ28 (d̃)Corresponds to hidden layer activations against partially faulted sensor set. 

Finally, to add robustness against small offset and miscalibration type sensor failures, an isotropic 

Gaussian type corruption process is devised for DAE-3 pre-training. The corruption procedure corrupts 

the ℎ/  hidden layer mappings, against clean sensors at the input layer as ℎ/,ℎ2(�)-  ,by employing an 

isotropic gaussian noise as follow. 

:;|�,ℎY/Zℎ/(�
)- = ��
��
�
�� ℎY/8 = ℎ/8 ¨ℎ28 (�)©    �ℎG G 9 ∉ �ℎY/8 Zℎ/8 ª ~  �(d, >/U) �ℎG G 9 ∈ �

⋃ K�8….me��L8!e��8e2  �ℎG G �8 = [1, P] =  �PO()�ℎG G ¡ =  9PHST � �¢T9�P �PO P = T�T�w 9PHSTd £�
¤
�¥

  (11) 

Finally, clean input is used for the supervised fine tuning phase in Fig. 4.  

5. Data Set Description 

 

Intentionally, for study purposes, we limited the modeling scope of DAASM to full power steady 

operational state. It’s the common state in which NPP operates from one refueling to the next. 

However, in practice it’s not possible for NPP systems to be in perfect steady state. Reactivity induced 

power perturbations; natural process fluctuations, sensor and controller noises etc. are some of the 

evident causes for NPP parameter fluctuations and are responsible for steady state dynamics. 

Considering that the collected data set should be fairly representative of all possible steady state 

dynamics and noise. So the selected sensors are sampled during different time spans of one complete 

operating cycle. The training data set consists of 6104 samples collected during the first two month of 

full power reactor operations after refueling cycle. While 3260 and 2616 samples are reserved for 

validation and test data sets respectively. Five Test data sets are used for model’s performance 

evaluation. Each test data set consists of 4360 samples collected during eight month period after 

refueling operation. In order to account for fault propagation phenomenon due to large signal groups, a 

sensor subset is selected for this study. An engineering sense selection based on physical proximity and 

functional correlation is used to define the sensor subset for this study. Thirteen transmitters, as listed 

in table 1, are selected from various services in nuclear steam supply system of a real PWR  type NPP. Fig 

5 shows the spatial distribution of the selected sensors. 

 



 

 

 

 

 

Table 1: List of NPP Sensors 

Transmitter 

ID 

Transmitter 

Name 

Service Units Low 

Range 

High 

Range 

FF1 FEED FLOW 1 FEEDWATER FLOW KG/S 0 600 

FF2 FEED FLOW 2 FEEDWATER FLOW KG/S 0 600 

SF1 STM FLOW 1 STEAM FLOW KG/S 0 600 

SF2 STM FLOW 2 STEAM FLOW KG/S 0 600 

SP1 STM PSR 1 STEAM PRESSURE BARG 0 100 

SP2 STM PSR 2 STEAM PRESSURE BARG 0 100 

SP3 STM PSR 3 STEAM PRESSURE BARG 0 100 

PP1 PZR PSR 1 PRESSURIZER PRESSURE BARG 116 170 

PP2 PZR PSR 2 PRESSURIZER PRESSURE BARG 116 170 

PL1 PZR LVL 1 PRESSURIZER LEVEL % 0 100 

PL2 PZR LVL 2 PRESSURIZER LEVEL % 0 100 

SGL1 SG LVL NR 1  RANGE STEAM GENERATOR LEVEL 

NARROW 

% 0 100 

SGL2 SG LVL NR 2  RANGE STEAM GENERATOR LEVEL 

NARROW 

% 0 100 

 

Starting from post refueling full power startup,the data set covers approximately one year of selected 

sensors values. Selected sensors are sampled every 10 second for consecutive 12 hour time window. Fig. 

6 shows data plot from few selected sensors. 

Reactor Vessel
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PL1 PL2

Pressurizer

SGL2

SF1

FF1

Steam Generator

Coolant Pump

SGL1

SP3

FF2

PP2

SP2SP1

SF2

Figure 5: Spatial distribution of selected Sensor Set. 



 

 

 

Figure 6: Plot of NPP sensors listed in table 1. 

 

6. Model Training  

 

NPP sensor’s data is divided into training, test and validation set. Each sensor data is scaled in 0.1 to 0.9 

ranges by using lower and upper extremities corresponding to individual sensor. However, the value 0 

and 1 is explicitly reserved for gross and saturation type sensor failures, respectively. Training data 

consists of 4320 samples from full power steady state reactor operation. While test and validation data 

is used for sensor model optimization and performance evaluation, respectively. The training setup for 

DAASM employs two learning stages, an unsupervised learning phase and supervised training phase.  

DAE based Greedy layer wise pre-training of each hidden layer, as described in section 4, is performed 

using mini-batches from training data set .Stochastic gradient descent based learning algorithm is 

employed as suggested in Practical training Recommendations by [30].Finally, standard back 

propagation algorithm is employed for supervised fine tuning in fully stacked DAASM model in Fig. 4. 

Supervised training is performed using clean sensor input only. The model hyper parameters are set by 

random grid search method[31].A summary of the training Hyper –parameters corresponding to 

optimum DAASM model are summarized in Table 2 . 

 



 

 

Table 2: Summary of DAASM Hyper parameters 

Hyper parameter Type  Tested Hyper-parameter values Successful Hyper parameter against 

Optimum  model 

Pre-trained DAE-Units 3 3 

Network Architecture I¬ − E(n, p) − B¬ − D(n, p) − o¬ I¬: Input Layer Neurons B¬: Bottleneck Layer Neurons o¬: Output Layer Neurons E(n, p): Encoder cascade D(n, p): Decoder Cascade n ∶ number of layers p: Neurons per layer 

 

13 − E(2,20) − 8 − D(2,20) − 13 

 

Learning rate for 

Unsupervised Pre-

training. 

Â0.1, 5 × 101/, 1 × 101/, 5 × 101t1 × 101t, 5 × 101Å Æ 
[5 × 101/, 1 × 101/] 

Learning rate for 

Supervised Training. 

Scheduled Learning rate based on 

Training error Monitoring. 

{ 0.15,0.1,0.005,0.001,0.0001} 

{0.1,0.005,0.001} 

Mean pre-Training  

error for each hidden 

layers  

Corresponding to minima observed 

during Cross Validation . 

101Å 

Weight Decay Ç K101t, 101Å, 101ÈL 101t 

Momentum m [0.85,0.99] [0.95,0.98] 

Input Corruption Level É 

Corrupted Input fraction: 

{10%,25%,30%,40%} 

Gaussian corruption (% of Sensor’s 

Nominal Value: 

{0.05,0.10,0.20,0.35,0.50} 

Input Fraction: [25-35]% 

Gaussian Noise Level: [0.10-0.25] 

Dropout fraction in 

DAE-3 

{0.10,0.20} 0.1 

 

7. Invariance Test for Robustness 

 

A layer by layer invariance study is conducted to test the robustness of fully trained DAASM model 

against failed sensor states. Data corruption processes applied during pre-training are essentially meant 

to learn hidden layer mappings which are stable and invariant to faulty sensor conditions. The following 

invariance test, for successive hidden layers in final DAASM stack, can provide an insight into the 

effectiveness of data corruption processes exercised during denoising based pre-training phase. 

Invariance, for hidden layer mappings ℎs, is quantified through mean square error (MSE) between 

Euclidean (L2) normalized hidden layer activation 
〈ÊË〉Ì‖〈ÊË〉Ì‖} and 

〈Ê�Ë〉Ì+〈Ê�Ë〉Ì+} against clean and faulty sensors , 

respectively.  Invariance Test samples are generated by corrupting randomly selected sensors in input 



 

 

set with varying level of offset failures [5%-50%]. The MSE against each offset level is normalized across 

hidden layer dimension DÊ and number of test samples Tj as shown in equation 12. Finally these MSE 

values are normalized with maximal MSE value as in equation 13. Normalized MSE curves for each 

successive hidden layer are plotted in fig. 7.  

 

Î�%(Ns , %R��dGT) = 2�Ð ∑ Ñ 〈ÒÓ〉Ô+〈ÒÓ〉Ô+}1 〈Ò�Ó〉Ô+〈Ò�Ó〉Ô+}Õ} ;ÒÖ�Ð�e2    (12) 

1 ≤ w ≤ 5 = ��. �� GP¢�OG  w�QG d = 3;    �PO  %���dGT = 5%, 10%, 20% … 50% 

Î�%m��×Øs8Ù�Ú(Ns) =  ÛÜÝ,Þß,%àááâ*ã-ÛÜÝ,Þß,%Ûäåæçááâ*ã-   (13) 

 

Layer wise MSE plots, in fig. 7, clearly shows that invariance to faulty sensor conditions increases toward 

higher layers in the network hierarchy. In these plots, lower curves indicate higher level of invariance. To 

further investigate the effect of increasing invariance on reconstructed sensor values; a sensor model, 

corresponding to the level "L" of each hidden layer is assembled via encoder and decoder cascade. 

Robustness of these partial models is quantified through(1 − Séêëìk ).  Auto-sensitivity values Séêëìk  (see 

section 8.2) are calculated against varying offset failure levels. In Fig. 8, layer wise increase in robustness 

confirms that increased invariance helps in improving overall model’s robustness.   

 

Figure 7: Layer-wise invariance in DAASM. Lower curves depict higher invariance. 



 

 

 

Figure 8: Robustness measure (1-autoSensitivity) at multiple hidden layers in DAASM. Higher curves depict high robustness. 

8. DAASM Vs K-AANN Performance Analysis. 

 

Here we will assess and compare the performance of  DAASM model with popular five layer AANN 

model originally proposed by Kramer [8]. The K-AANN model is trained with same data set as used for 

DAASM and is regularized with Levenberg-Marquardt algorithm. Further to improve robustness, training 

with jitter heuristic is employed by introducing a noise of 10% magnitude on clean sensor input. The 

following five layer topology 13-17-9-17-13 is found optimum for k-AANN model. Both DAASM and K-

AANN models are compared through Accuracy, robustness, spillover and fault detectability based 

performance metrics in the following subsections. All performance metrics are calculated against test 

data set, consisting of 4320 samples from post refueling full power NPP operations. Performance metric 

values are reported in Table A.1 in appendix. 

8.1  Accuracy 

 

Mean square error (MSE) of observed and model estimated sensor values, against fault free test data 

set, is used to quantify accuracy metric as follows. 

¢¢S �¢Q = 2m ∑ ,�	8 − �8-/m8e2     (14) 

The MSE values of all sensors are normalized to their respective span and are presented as percent span 

in fig. 9.  Being an error measure, the lower MSE values by DAASM signify its prediction accuracy. 



 

 

 

Figure 9: MSE depicting DAASM and K-AANN accuracy on each sensor. 

 

8.2  Robustness 

Robustness is quantified through Auto-sensitivity as defined by[32] [33]. It is the measure of model’s 

ability to predict correct sensor values under missing or corrupted sensor states. The measure is 

averaged over an operating region defined by k samples from test data set as follow. 

�����8 = 2m ∑ í�̂ïÓð(Óáã1�̂ïÓ�ïÓð(Óáã1�ïÓímñe2       (15) 

Where 

 9And � are indexes corresponding to sensors and their respective test samples,. 

dñ8 is the original sensor value without fault. 

d̂ñ8 is the model estimated  sensor value against dñ8 . 
dñ8Ú�80�

 is the drifted/faulted  sensor value . 

d̂ñ8Ú�80�
 is the model estimated  sensor value against drifted value dñ8Ú�80�

 . 

 The auto-sensitivity metric lie in [0,1] range. For auto-sensitivity value of one, the model predictions 

follow the fault with zero residuals; hence no fault can be detected. Smaller auto-sensitivity values are 

preferred, which essentially means decreased sensitivity towards small perturbations. Large auto-

sensitivity values may lead to missed alarms due to under-estimation of the fault size caused by small 



 

 

residual values. Compared to k-AANN model, in case of DAASM model, a significant decrease in auto-

sensitivity values for all sensors is observed.  The plot in fig 10 shows that DAASM is more robust to 

failed sensor inputs.   

 

Figure 10:Auto-sensitivity values of individual sensors in both models. 

To further investigate robustness against large offset failures, both models are evaluated against 

offset failures in [5%-50%] range. For each sensor, samples from test data are corrupted with specific 

offset level and corresponding auto-sensitivities are averaged over whole sensor set. Auto-sensitivity 

values less than 0.2 are considered as robust. The maximum auto-sensitivity value of 0.187 is observed 

in steam flow sensor. The plot in fig. 11 shows that average auto-sensitivity for both models increases 

with increasing level of offset failure. However, the auto-sensitivity curve for DAASM auto-sensitivity is 

well below than the corresponding K-AANN curve. 



 

 

 

Figure 11: Comparison of  robustness against increasing offset failure. 

 

8.3  Spillover 

 

Depending upon the size and type of failure, a failed sensor input can cause discrepancy in estimated 

output for other sensors. The phenomenon is referred in literature as “spillover effect” and is quantified 

through “Cross-Sensitivity” metric [32]. It quantifies the influence of faulty sensor 9  on predictions of 

sensor  �  as follow. 

������ò8 = 2m ∑ ó�̂ïôð(Óáã1�̂ïô�ïÓð(Óáã1�ïÓómñe2         (12) 

������ò = 2m12 ∑ ������ò8m8e2    �PO 9 ≠ �    (13) 

Where,  9 �PO � indexes are used to refer faulty and non-faulty sensors, respectively. While,  � is 

the index for corresponding test samples. 

������ò8
  is the cross-sensitivity of sensor j w.r.t drift in  iëÊ sensor. 

dñ8 is the value of iëÊ  sensor without any fault. 

d̂ñò is the model estimated value of jëÊ sensor against dñ8 . 
dñ8Ú�80�

 is the drifted/faulted  value of iëÊ sensor. 



 

 

d̂ñòÚ�80�
 is the Model estimated  value of jëÊsensor against drifted value dñ8Ú�80�

 . 

The cross-sensitivity affect is more eminent for neural network based sensor models because of the 

highly distributed representation of input at hidden layer mappings. Cross-sensitivity metric value lies in 

[0,1] range. High value of cross-sensitivity may set- off false alarms in other sensors, provided the 

residual values overshoot the fault detectability threshold in other sensors. So, minimum cross 

sensitivity value is desired for a robust model. The plot in fig. 12 shows that the cross-sensitivity for 

DAASM model is reduced by a large factor as compared to k-AANN model. 

 

Figure 12: Cross-Sensitivity values of individual sensors in Both Models. 

The spillover effect, against particular level of offset failure in [5% - 50%] range, is averaged over all 

sensors as follow. 

÷!. ø �dd �GPd9T9÷9TQ(ù%) = ∑ &ú(çââ(û%)ôÐôüý m     (14) 

���dGT ��9wS G wG÷Gw ù % = 5%, 10%, 20% … 50% 

The cross-sensitivity values �þ����(�)ò
 , against K% offset failure level ,are calculated using equation 13. 

fig. 13 shows the average cross-sensitivity plot for both models. Small cross-sensitivities are observed in 

DAASM model which effectively avoided false alarms in other channels without relaxing the SPRT 

faulted mean value up to an offset failure of 35-40 % in any channel. However, for the case of offset 

noise larger than 35%, SPRT mean need to be relaxed to avoid false alarms and isolate the faulty sensor. 

For k-AANN model, the spillover effect beyond 15% offset failure significantly deteriorates model’s 

robustness. 



 

 

 

Figure 13: Comparison of spillover effects against increasing offset failure. 

Similarly, gross failure scenarios corresponding to two extremities of sensor range can cause severe 

Spillover effect. To study robustness against gross type failure scenario, a subset of input sensors is 

simultaneously failed with gross high or low value and average cross-sensitivity of remaining sensor set 

is calculated using relation 14. Plot in fig. 14 shows that average cross-sensitivity of k- AANN model 

increases drastically beyond 10% gross failure. However, DAASM resulted in a very nominal spillover; 

even in case of multiple sensor failure. The DAASM model effectively managed simultaneous gross high 

or low failures in 25% of total sensor set as compared to 10% in case of k-AANN.  

 

Figure 14: Comparison of spillover effect against simultaneous gross high/low failure in multiple sensors. 



 

 

 

8.4 Fault Detectibility 

 

Fault Detectability metric measures the smallest fault that can be detected by integrated sensor 

estimation and  fault detection module as shown in Fig. 1 [32].The detectability metric is measured as 

percentage of sensor span  D=
�&�Ø�, where value  M  corresponds to minimum detectable fault. 

Minimum fault detectability limit ,for each sensor, is quantified through Statistical based  Sequential 

probability ratio test (SPRT) by Wald [34]. SPRT test is carried out to detect if the residual being 

generated from normal distribution �(�2, >/)  or �(��, >/) as defined for faulty and fault free sensor 

operations, respectively[35]. Calibration failures are reflected in the mean parameter of residual’s 

distribution. The SPRT procedure is applied to detect changes in the mean of residual’s distribution. The 

application of  SPRT requires setting  of following parameters value [36]. 

��: P� u�w u�OG  Gd9OS�w uG�P 

>/: P� u�w u�OG  Gd9OS�w ÷� 9�P¢G 

�2: G3HG¢TGO ���dGT 9P  Gd9OS�w uG�P 9P �AP� u�w u�OG 

�: ��wdG �w� u H �A�A9w9TQ 

�: Î9ddGO �w� u H �A�A9w9TQ 

Under normal mode, the residuals from observed and model estimated sensor values behave as a white 

Gaussian noise with mean �� = 0. The residual variance >/ is estimated for each sensor under normal 

operating conditions and remained fix. The false alarm � and missed alarm � probabilities are set to be 

0.001 and 0.01, respectively. In order to determine minimum fault detectability limit, a numerical 

procedure is opted that searches for minimum expected offset �2 in the interval {�2: [>-3>]}, provided 

the constraint on missed and false alarm rate holds. > is the standard deviation corresponding to 

residual variance of particular sensor. The plot in fig. 15 shows the detectability metric for each sensor.  

The plot in fig. 15 shows that DAASM model can detect faults which are two times smaller in magnitude 

than those detectable by K-AANN model.  



 

 

 

Figure 15: Comparison of fault detectability metric. 

 

Improvement in fault detectibility metric for DAASM model can be attributed to observed improvement 

in model robustness ; as suggested by following relation.  

�Ó
∆&Óð(Óáã = (1 − �����8 )      (15) 

The term
�Ó

∆&Óð(Óáã  measures the ratio of observed residual to actual sensor drift in terms of auto-

sensitivity. For highly robust model, this ratio reduces to one which means residual reflects the actual 

drift and results in high fault detectability. Contrarily, ratio value close to zero means that the prediction 

is following the input and results in poor fault detectability.  

8.4.1 SPRT Based Fault Detectibility Test 

 

Sequential probability ratio[34][36] based fault hypothesis test is  applied to residual sequence K�8L =  2(�ý) ,  2(�ý)… �(�Ô)   generated by relation Rk(tk) = S	
�(tk) − S��ë(tk) at time ti.  Where S	
�(tk) and S��ë(tk)  are the actual and model predicted sensor values, respectively. The SPRT 

procedure analyzes whether the residual sequence is more likely to be generated from a probability 

distribution that belongs to normal mode hypothesis HO or abnormal mode hypothesis H1   by using 

likelihood ratio as follow.  

5� =  G3H1 ý}�}�∑ �ý(�ý1/�Ó)ÔÓüý ��
     (16) 

 



 

 

For fault free sensor values, the normal mode hypotheses H0 is approximated by gaussian distribution 

with mean µ0=0 and variance>/. Abnormal mode hypothesis H1 is approximated with mean µ1 >µ0 using 

same variance >/ . The  SPRT  index  for  the  positive  mean  test  is  finally  obtained  by  taking   

logarithm  of  the  likelihood ratio in equation 16 as follow [35]. 

 

���� = ln (5�) =  − 2/�} [∑ �2(�2 − 2 8)�8e2 ] = �ý
�} ∑ ¨ 8 − �ý/ ©�8e2    (17) 

 

Pressurizer pressure sensor, sampled at a frequency of 10 second, is used as a test signal to validate the 

fault detectability performance. Two drift faults, at the rate of +0.01%/hour and -0.01%/hour, are 

introduced in the test signal for DAASM and K-AANN model’s assessment, respectively. The first and 

second plot in Fig. 16 shows drifted and estimated pressure signal from DAASM and k-AANN model, 

respectively.  Third plot shows residual values generated by differencing the drifted and estimated 

signals from both models. The final plot shows SPRT index values against residuals from K-AANN and 

DAASM models. The hypothesis H1 and H0 corresponds to positive and negative fault acceptance, 

respectively. From SPRT index plot, successful early detection of the sensor drift at 2200
th

 sample, with 

lag of 6.11 hour since the drift inception, shows that DAASM model is more sensitive to small drifts. On 

the other hand, SPRT index on k-AANN based sensor estimates registered the same drift at 3800
th

sample 

with a lag of almost 10.55 hours. The result shows that DAASM is more robust in terms of early fault 

detection with low false and missed alarm rates.
 

 

Figure 16:  SPRT based fault detection in pressurizer pressure sensor. 



 

 

Finally, both models are tested against five test data sets. Each test set consists of 3630 samples 

corresponding to different months of full power reactor operation. Both models successfully detected 

an offset failure of 0.12-0.3 BARG in all steam pressure channels and a drift type failure up to 2.85 % in 

steam generator level. The k-AANN model failed to register a very small drift up to 0.1% in steam flow 

(STM FLOW1) channel. A small drift up to 0.1 BARG is detected in test set 5 of pressurizer pressure 

channel. However, in case of drift type sensor failures, fault detection lag for DAASM model was on 

average 0.5 times smaller in comparison with k-AANN model. Plots in fig. 17 through 21 show the 

estimated sensor values ,from both models, on five test data sets of few selected channels.  

 

 

Figure 17: Steam pressure estimates against offset failures up to 0.3 (BARG) 

 

Figure 18: Feed flow estimates. 



 

 

 

Figure 19: Steam flow estimates against drift failure up to 0.1% 

 

Figure 20: Pressurizer level estimates. 

 

Figure 21: Pressurizer pressure estimates against drift failure up to 0.1% 



 

 

 

Figure 22: Steam generator level estimates against growing drift failure up to 2.87%. 

 

CONCLUSION 
This paper presented a neural network based Denoised Auto-Associative Sensor Model (DAASM) for 

empirical sensor modeling. The proposed sensor model is trained to generate a monitoring system for 

sensor fault detection in nuclear power plants. Multi-layer AANN based sensor models may result in 

suboptimal solutions due to poor regularization by traditional back propagation based joint multi-layer 

learning procedures. So a complementary deep learning approach, based on greedy layer wise 

unsupervised pre-training is employed for effective regularization in the proposed multi-layer DAASM 

model. Auto-encoder architecture is used for denoising based unsupervised pre-training and 

regularization of individual layers in the network hierarchy. To address robustness against perturbations 

in input sensors; data corruption processes exercised during unsupervised pre-training phase were 

based on prior knowledge about different failure scenarios. Results from invariance tests showed that 

the proposed data corruption schemes were beneficial in learning latent representations at hidden 

layers and were invariant to multiple levels of perturbation in input sensors. Consequently, these pre-

trained hidden layers worked as well regularized perturbation filters with increased invariance towards 

sensor faults. It is also observed that sensitivity against sensor faults decreased significantly towards 

higher layers in full DAASM assembly. In a practical context of sensor monitoring in nuclear power 

plants, the proposed model proved its robustness against gross type simultaneous sensor failures. It also 

showed significant improvement in all performance metrics when compared with popular and widely 

used five layered AANN model by Kramer. Moreover, time lag in small drift’s detection is significantly 

reduced. The overall results suggest that greedy layer wise pre-training technique, in combination with 

domain specific corruption processes, provides a viable framework for effective regularization and 

robustness in such deep multi-layered auto-associative sensor validation models. 
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APPENDIX A 

 

Table A. 1: Results of DAASM and K-AANN Performance Metrics. 

Performance 

Metric 
M o d e l  T y p e FEED FLOW 1 FEED FLOW 2 STM FLOW 1 STM FLOW 2 STM PSR 1 STM PSR 2 STM PSR 3 PZR PSR 1 PZR PSR 2 PZR LVL 1 PZR LVL 2 SG LVL NR 1 SG LVL NR 2 
AANN Sp-DAANN 

Accuracy (% Span) �  0.38

2 

0.36

1 

0.34

3 

0.41

2 

0.1

86 

0.2

11 

0.1

66 

0.3

86 

0.4

11 

0.2

43 

0.2

23 

0.

51

2 

0.

62

1 

 � 0.28

1 

0.25

3 

0.24

6 

0.29

3 

0.1

21 

0.1

32 

0.1

22 

0.2

43 

0.3

15 

0.1

73 

0.1

56 

0.

39

4 

0.

46

5 

Auto-Sensitivity � 
 0.27

3 

0.29

4 

0.32

1 

0.33

2 

0.2

05 

0.1

82 

0.1

98 

0.2

53 

0.2

33 

0.2

25 

0.2

31 

0.

26

8 

0.

30

1 

 � 
0.15

3 

0.16

7 

0.18

7 

0.16

3 

0.1

12 

0.0

79 

0.0

82 

0.1

31 

0.0

71 

0.1

4 

0.1

17 

0.

13

3 

0.

18

7 

Cross-Sensitivity � 
 0.12

8 

0.12

4 

0.11

3 

0.11

6 

0.1

12 

0.1

08 

0.0

92 

0.0

79 

0.0

83 

0.0

98 

0.1

1 

0.

10

3 

0.

10

5 

 � 
0.06

32 

0.05

27 

0.05

63 

0.06

14 

0.0

39 

0.0

311 

0.0

287 

0.0

18

6 

0.0

20

3 

0.0

34

4 

0.0

33

6 

0.

03 

0.

02

86 

SPRT Detectibility � 
 0.31

2 

0.31

5 

0.33 0.35 0.0

4 

0.0

5 

0.0

4 

0.0

8 

0.0

86 

0.1 0.0

9 

0.

06 

0.

05

8 

 � 
0.18

4 

0.16

5 

0.19 0.2 0.0

21 

0.0

23 

0.0

2 

0.0

48 

0.0

5 

0.0

4 

0.0

4 

0.

03

2 

0.

02

8 
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